1
|
Liaquat I, Munir R, Abbasi NA, Sadia B, Muneer A, Younas F, Sardar MF, Zahid M, Noreen S. Exploring zeolite-based composites in adsorption and photocatalysis for toxic wastewater treatment: Preparation, mechanisms, and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123922. [PMID: 38580064 DOI: 10.1016/j.envpol.2024.123922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Water scarcity has become a critical global concern exacerbated by population growth, globalization, and industrial expansion, resulting in the production of wastewater containing a wide array of contaminants. Tackling this challenge necessitates the adoption of innovative materials and technologies for effective wastewater treatment. This review article provides a comprehensive exploration of the preparation, applications, mechanisms, and economic environmental analysis of zeolite-based composites in wastewater treatment. Zeolite, renowned for its versatility and porous nature, is of paramount importance due to its exceptional properties, including high surface area, ion exchange capability, and adsorption capacity. Various synthetic methods for zeolite-based composites are discussed. The utilization of zeolites in wastewater treatment, particularly in adsorption and photocatalysis, is thoroughly investigated. The significance of zeolite in adsorption and its role in the photocatalytic degradation of pollutants are examined, along with its applications in treating volatile organic compounds (VOCs), dye wastewater, oil-field wastewater, and radioactive waste. Mechanisms underlying zeolite-based adsorption and photocatalysis, including physical and chemical adsorption, ion exchange, and surface modification, are elucidated. Additionally, the role of micropores in the adsorption process is explored. Furthermore, the review delves into regeneration and desorption studies of zeolite-based composites, crucial for sustainable wastewater treatment practices. Economic and environmental analyses are conducted to assess the feasibility and sustainability of employing zeolite-based composites in wastewater treatment applications. Future recommendations are provided to guide further research and development in the field of zeolite-based composites, aiming to enhance wastewater treatment efficiency and environmental sustainability. By exploring the latest advancements and insights into zeolite-based nanocomposites, this paper aims to contribute to the development of more efficient and sustainable wastewater treatment strategies. The integration of zeolite-based materials in wastewater treatment processes shows promise for mitigating water pollution and addressing water scarcity challenges, ultimately contributing to environmental preservation and public health protection.
Collapse
Affiliation(s)
- Iqra Liaquat
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ruba Munir
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Naseer Ahmed Abbasi
- Department of Land and Water Management, Faculty of Agricultural Engineering, Sindh Agriculture University Tandojam, 70060, Pakistan
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amna Muneer
- Department of Physics, Government College Women University, Faisalabad 38000, Pakistan
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Muhammad Fahad Sardar
- Qingdao Key Laboratory of Ecological Protection and Restoration, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Muhammad Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Senila M, Cadar O. Modification of natural zeolites and their applications for heavy metal removal from polluted environments: Challenges, recent advances, and perspectives. Heliyon 2024; 10:e25303. [PMID: 38352776 PMCID: PMC10862511 DOI: 10.1016/j.heliyon.2024.e25303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
In recent decades, environmental pollution has become a significant problem for human health and environmental impact. The high accumulation of heavy metals in waters and soils from different sources was conducted by finding efficient and environmentally friendly treatment methods and materials for their removal. Natural zeolites have found wide-ranging applications in environmental remediation and protection, considering various treatment and modification methods designed to enhance the natural zeolites' adsorptive or ion-exchange capabilities for increased efficiency. This paper briefly consolidates the recent scientific literature related to the main characteristics of natural and modified zeolites, the advantages and limitations of their environmental remediation application, and summarizes the methodologies applied to natural zeolites in order to improve their properties. Their application for removing heavy metals from water systems and soils is also comprehensively discussed. This review highlights the excellent potential of natural zeolites to be used after specific treatment or modification as a sustainable and green material to solve numerous environmental pollution issues.
Collapse
Affiliation(s)
- Marin Senila
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293, Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Segovia-Hernández JG, Hernández S, Cossío-Vargas E, Sánchez-Ramírez E. Tackling sustainability challenges in Latin America and Caribbean from the chemical engineering perspective: A literature review in the last 25 years. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Zhao F, Shan R, Li W, Zhang Y, Yuan H, Chen Y. Synthesis, Characterization, and Dye Removal of ZnCl 2-Modified Biochar Derived from Pulp and Paper Sludge. ACS OMEGA 2021; 6:34712-34723. [PMID: 34963954 PMCID: PMC8697412 DOI: 10.1021/acsomega.1c05142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/01/2021] [Indexed: 05/24/2023]
Abstract
In this study, pulp sludge-derived biochar synthesized through modification with ZnCl2 under multistep pyrolysis conditions was investigated for the effective removal of methylene blue (MB) from aqueous solution. Results showed that when the Zn2PT350-700 dosage was 10 mg, the largest adsorption amount of MB was 590.20 mg/g within 24 h under pH = 8. Kinetics and thermodynamics revealed that the adsorption process of MB can be described by the Freundlich isotherm model and the pseudo-second-order kinetic model, which means that multilayer sorption occurred on the heterogeneous surface of Zn2PT350-700. The analysis of the adsorption mechanism showed that electrostatic attraction between the deprotonated functional groups and MB+, cation exchange, and π-electron interaction played a major role in MB adsorption, followed by physical adsorption. After six cycles of desorption-adsorption, Zn2PT350-700 still maintained good adsorption performance. All results demonstrated that Zn2PT350-700 could perform as promising adsorbents for efficient MB removal from wastewater. Using biochar from paper and pulp sludge for wastewater remediation is an ingenious method, which can reduce the environmental and health risks related to industrial waste disposal, while providing remediation of water contaminated with industrial dye effluents.
Collapse
Affiliation(s)
- Fengxiao Zhao
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan Road, Guangzhou 510640, China
- Southern
Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou 510640, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Shan
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan Road, Guangzhou 510640, China
- Southern
Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou 510640, China
| | - Wenjian Li
- Zhejiang
Golden Pot Boiler Ltd., No. 699, Huancheng South Road, Jinhua 321015, China
| | - Yuyuan Zhang
- College
of Materials Science and Energy Engineering, 33 Guangyun Road, Foshan 528000, China
| | - Haoran Yuan
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan Road, Guangzhou 510640, China
- Southern
Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou 510640, China
| | - Yong Chen
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, No. 2, Nengyuan Road, Guangzhou 510640, China
- Southern
Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou 510640, China
| |
Collapse
|
5
|
Ibrahim MM, El-Sheshtawy HS, Abd El-Magied MO, Manaa ESA, Youssef MAM, Kouraim MN, Eldesouky EM, Dhmees AS. A facile and cost-effective adsorbent derived from industrial iron-making slag for uranium removal. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07914-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|