1
|
Polymer/Enzyme Composite Materials—Versatile Catalysts with Multiple Applications. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A significant interest was granted lately to enzymes, which are versatile catalysts characterized by natural origin, with high specificity and selectivity for particular substrates. Additionally, some enzymes are involved in the production of high-valuable products, such as antibiotics, while others are known for their ability to transform emerging contaminates, such as dyes and pesticides, to simpler molecules with a lower environmental impact. Nevertheless, the use of enzymes in industrial applications is limited by their reduced stability in extreme conditions and by their difficult recovery and reusability. Rationally, enzyme immobilization on organic or inorganic matrices proved to be one of the most successful innovative approaches to increase the stability of enzymatic catalysts. By the immobilization of enzymes on support materials, composite biocatalysts are obtained that pose an improved stability, preserving the enzymatic activity and some of the support material’s properties. Of high interest are the polymer/enzyme composites, which are obtained by the chemical or physical attachment of enzymes on polymer matrices. This review highlights some of the latest findings in the field of polymer/enzyme composites, classified according to the morphology of the resulting materials, following their most important applications.
Collapse
|
2
|
Du Y, Zhang X, Liu P, Yu DG, Ge R. Electrospun nanofiber-based glucose sensors for glucose detection. Front Chem 2022; 10:944428. [PMID: 36034672 PMCID: PMC9403008 DOI: 10.3389/fchem.2022.944428] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/30/2022] [Indexed: 12/15/2022] Open
Abstract
Diabetes is a chronic, systemic metabolic disease that leads to multiple complications, even death. Meanwhile, the number of people with diabetes worldwide is increasing year by year. Sensors play an important role in the development of biomedical devices. The development of efficient, stable, and inexpensive glucose sensors for the continuous monitoring of blood glucose levels has received widespread attention because they can provide reliable data for diabetes prevention and diagnosis. Electrospun nanofibers are new kinds of functional nanocomposites that show incredible capabilities for high-level biosensing. This article reviews glucose sensors based on electrospun nanofibers. The principles of the glucose sensor, the types of glucose measurement, and the glucose detection methods are briefly discussed. The principle of electrospinning and its applications and advantages in glucose sensors are then introduced. This article provides a comprehensive summary of the applications and advantages of polymers and nanomaterials in electrospun nanofiber-based glucose sensors. The relevant applications and comparisons of enzymatic and non-enzymatic nanofiber-based glucose sensors are discussed in detail. The main advantages and disadvantages of glucose sensors based on electrospun nanofibers are evaluated, and some solutions are proposed. Finally, potential commercial development and improved methods for glucose sensors based on electrospinning nanofibers are discussed.
Collapse
Affiliation(s)
- Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Xinyi Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Ping Liu
- The Base of Achievement Transformation, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
- Institute of Orthopaedic Basic and Clinical Transformation, University of Shanghai for Science and Technology, Shanghai, China
- Shidong Hospital, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, China
| | - Ruiliang Ge
- Department of Outpatient, the Third Afiliated Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
3
|
Drobota M, Ursache S, Aflori M. Surface Functionalities of Polymers for Biomaterial Applications. Polymers (Basel) 2022; 14:polym14122307. [PMID: 35745883 PMCID: PMC9229900 DOI: 10.3390/polym14122307] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Changes of a material biointerface allow for specialized cell signaling and diverse biological responses. Biomaterials incorporating immobilized bioactive ligands have been widely introduced and used for tissue engineering and regenerative medicine applications in order to develop biomaterials with improved functionality. Furthermore, a variety of physical and chemical techniques have been utilized to improve biomaterial functionality, particularly at the material interface. At the interface level, the interactions between materials and cells are described. The importance of surface features in cell function is then examined, with new strategies for surface modification being highlighted in detail.
Collapse
Affiliation(s)
- Mioara Drobota
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
| | - Stefan Ursache
- Innovative Green Power, No. 5 Iancu Bacalu Street, 700029 Iasi, Romania;
| | - Magdalena Aflori
- “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Gr. Ghica Voda, 700487 Iasi, Romania;
- Correspondence:
| |
Collapse
|
4
|
Quantification of cell oxygenation in 2D constructs of metallized electrospun polycaprolactone fibers encapsulating human valvular interstitial cells. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.116005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Sanz CG, Onea M, Aldea A, Barsan MM. Disposable superoxide dismutase biosensors based on gold covered polycaprolactone fibers for the detection of superoxide in cell culture media. Talanta 2022; 241:123255. [DOI: 10.1016/j.talanta.2022.123255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 12/17/2022]
|
6
|
Chung M, Skinner WH, Robert C, Campbell CJ, Rossi RM, Koutsos V, Radacsi N. Fabrication of a Wearable Flexible Sweat pH Sensor Based on SERS-Active Au/TPU Electrospun Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51504-51518. [PMID: 34672514 DOI: 10.1021/acsami.1c15238] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Development of wearable sensing platforms is essential for the advancement of continuous health monitoring and point-of-care testing. Eccrine sweat pH is an analyte that can be noninvasively measured and used to diagnose and aid in monitoring a wide range of physiological conditions. Surface-enhanced Raman scattering (SERS) offers a rapid, optical technique for fingerprinting of biomarkers present in sweat. In this paper, a mechanically flexible, nanofibrous, SERS-active substrate was fabricated by a combination of electrospinning of thermoplastic polyurethane (TPU) and Au sputter coating. This substrate was then investigated for suitability toward wearable sweat pH sensing after functionalization with two commonly used pH-responsive molecules, 4-mercaptobenzoic acid (4-MBA), and 4-mercaptopyridine (4-MPy). The developed SERS pH sensor was found to have good resolution (0.14 pH units for 4-MBA; 0.51 pH units for 4-MPy), with only 1 μL of sweat required for a measurement, and displayed no statistically significant difference in performance after 35 days (p = 0.361). Additionally, the Au/TPU nanofibrous SERS pH sensors showed fast sweat-absorbing ability as well as good repeatability and reversibility. The proposed methodology offers a facile route for the fabrication of SERS substrates which could also be used to measure a wide range of health biomarkers beyond sweat pH.
Collapse
Affiliation(s)
- Michael Chung
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - William H Skinner
- EaStCHEM School of Chemistry, The University of Edinburgh, King's Buildings, Edinburgh EH9 3FJ, United Kingdom
| | - Colin Robert
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| | - Colin J Campbell
- EaStCHEM School of Chemistry, The University of Edinburgh, King's Buildings, Edinburgh EH9 3FJ, United Kingdom
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Vasileios Koutsos
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, King's Buildings, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom
| |
Collapse
|