1
|
Ghosal S, Nandi S, Giri PK. Recent advances in semiconductor nanostructure-based surface-enhanced Raman scattering sensors. NANOTECHNOLOGY 2025; 36:202002. [PMID: 40215997 DOI: 10.1088/1361-6528/adcbaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/11/2025] [Indexed: 04/26/2025]
Abstract
Surface-enhanced Raman scattering (SERS) has become a transformative analytical tool, attracting growing interest for its wide-ranging applications. The development of SERS-active materials is now a central research area, spurring innovation in various types of SERS substrates. While noble metal-based substrates remain extensively studied, semiconductor-based, non-metal substrates are garnering attention due to their unique advantages: excellent chemical stability, high carrier mobility, biocompatibility, and precise fabrication control. However, their generally weaker enhancement effects limit their utility, underscoring the need for strategies to boost their SERS activity. Understanding the complex enhancement mechanisms in semiconductor-based SERS substrates is critical for designing next-generation materials with metal-like enhancement factors (EFs). The interplay of charge transfer, localized surface plasmon resonance, and photonic effects makes the enhancement process inherently challenging to unravel. Therefore, the search for new materials with exciting optoelectronic properties, as well as more innovative solutions to increase their SERS sensitivity, continues to grow. In this review, we explore the latest advancements in semiconductor-based SERS substrates, dissecting the complex enhancement mechanisms and various modification strategies aimed at achieving metal-like high EFs. We present a comprehensive analysis of the methods used to improve the SERS performance of semiconductor substrates and conclude with potential future directions for advancing this dynamic field.
Collapse
Affiliation(s)
- Sirsendu Ghosal
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sanju Nandi
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - P K Giri
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
2
|
Li H, Tian Y, Tan L, Wang N, Qiao Y, Wang J. A double-emission molecularly imprinted ratiometric fluorescent sensor based on carbon quantum dots and fluorescein isothiocyanate for visual detection of p-nitroaniline. Mikrochim Acta 2024; 191:377. [PMID: 38850342 DOI: 10.1007/s00604-024-06466-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/25/2024] [Indexed: 06/10/2024]
Abstract
A novel molecularly imprinted ratiometric fluorescent sensor CQDs@MIP/FITC@SiO2 for the detection of p-nitroaniline (p-NA) was constructed through the mixture of CQDs@MIP and FITC@SiO2 in the ratio of 1:1 (VCQDs@MIP:VFITC@SiO₂). The polymers of CQDs@MIP and FITC@SiO2 were prepared by sol-gel method and reversed-phase microemulsion method, respectively. CQDs@MIP was used as the auxiliary response signal and FITC@SiO2 was used as the reference enhancement signal. The signal was measured at excitation/emission wavelengths of 365/438, 512 nm. The sensor showed good linearity in the concentration range 0.14-40.00 µM (R2 = 0.998) with a detection limit of 0.042 µM for p-NA. The color change of "blue-cyan-green" could be observed by the naked eye under 365 nm UV light, thus realizing the visual detection of p-NA. The sensor presented comparable results compared with high-performance liquid chromatography (HPLC) method for the detection of p-NA in hair dye paste and aqueous samples with recoveries of 96.8-103.7% and 95.8-104.4%, respectively. It was demonstrated that the constructed sensor possesses the advantages of simplicity, excellent selectivity, superior sensitivity, and outstanding stability.
Collapse
Affiliation(s)
- Huiru Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministy of Education, Ocean University of China, Qingdao, 266100, China
| | - Yanbo Tian
- Key Laboratory of Marine Chemistry Theory and Technology, Ministy of Education, Ocean University of China, Qingdao, 266100, China
| | - Liju Tan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministy of Education, Ocean University of China, Qingdao, 266100, China.
| | - Na Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministy of Education, Ocean University of China, Qingdao, 266100, China
| | - Yu Qiao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministy of Education, Ocean University of China, Qingdao, 266100, China
| | - Jiangtao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministy of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
3
|
Sun C, Wang L, Guo N, Hu R, Ye L, Hu Z, Ding J. Research on a three-dimensional SERS substrate based on a CNTs/Ag@Au/SiO 2 composite for detection of fipronil and imidacloprid pesticides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4494-4505. [PMID: 37610266 DOI: 10.1039/d3ay01098h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Surface-enhanced Raman scattering (SERS) has a unique fingerprint spectrum, which allows for rapid, highly sensitive, and non-destructive detection without the need for sample pretreatment. However, SERS substrates have disadvantages such as short storage time and poor reproducibility. In this study, carbon nanotubes, gold, and silver were combined to take advantage of their inherent structural and characteristic properties that enhance the Raman effect. A new type of SERS composite substrate, CNTs/Ag@Au/SiO2, was prepared using a hydrothermal method and seed growth method. The substrate was characterized using transmission electron microscopy (TEM), and the average distance between the core-shell nanoparticles was found to be 3.1 nm, which is more suitable than other gold-silver combined core-shell structures and significantly improves the SERS enhancement factor. The substrate demonstrated high sensitivity even at low concentrations of probe molecules and good uniformity at five randomly selected locations. After storage for 45 days, the substrate still exhibited good stability. In most gold-silver combined core-shell structures, the detection limit for Rhodamine 6G (R6G) is 10-9 mol L-1, while in this substrate, the detection limit for R6G is 10-11 mol L-1. Furthermore, the contribution of the substrate's enhancement was deeply investigated using finite-difference time-domain (FDTD), which revealed that the substrate's hotspots were present in two forms: the "hotspots generated between Ag@Au nanoparticles" and the "hotspots generated between Ag@Au nanoparticles and carbon nanotubes". These two forms of hotspots also demonstrated that the performance brought about by the preparation of the substrate structure was reliable. The simulation results were compared with the experimental results, and the analysis showed that the real environment would have an impact on the substrate's structure during the actual substrate preparation process. Finally, the substrate was used for detecting the pesticide fipronil, and the results showed clear peaks even at a concentration of 0.1 mg L-1. The results indicated that the Raman intensity was linearly exponential with the fipronil solution concentration, with a determination coefficient of R2 = 0.991. This study provides a new SERS substrate for pesticide residue detection and further explores the improvement of pesticide detection limits.
Collapse
Affiliation(s)
- Chao Sun
- State Key Laboratory of Precision Blasting, Jianghan University, China.
- College of Intelligent Manufacturing, Jianghan University, Wuhan, 430056, China
| | - Lizheng Wang
- State Key Laboratory of Precision Blasting, Jianghan University, China.
| | - Naiyu Guo
- State Key Laboratory of Precision Blasting, Jianghan University, China.
| | - Runze Hu
- State Key Laboratory of Precision Blasting, Jianghan University, China.
| | - Li Ye
- State Key Laboratory of Precision Blasting, Jianghan University, China.
| | - Zhiming Hu
- State Key Laboratory of Precision Blasting, Jianghan University, China.
| | - Jianjun Ding
- State Key Laboratory of Precision Blasting, Jianghan University, China.
- College of Intelligent Manufacturing, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
4
|
Barbillon G, Cheap-Charpentier H. Advances in Surface-Enhanced Raman Scattering Sensors of Pollutants in Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2417. [PMID: 37686925 PMCID: PMC10489740 DOI: 10.3390/nano13172417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Water scarcity is a world issue, and a solution to address it is the use of treated wastewater. Indeed, in these wastewaters, pollutants such as pharmaceuticals, pesticides, herbicides, and heavy ions can be present at high concentrations. Thus, several analytical techniques were initiated throughout recent years for the detection and quantification of pollutants in different types of water. Among them, the surface-enhanced Raman scattering (SERS) technique was examined due to its high sensitivity and its ability to provide details on the molecular structure. Herein, we summarize the most recent advances (2021-2023) on SERS sensors of pollutants in water treatment. In this context, we present the results obtained with the SERS sensors in terms of detection limits serving as assessment of SERS performances of these sensors for the detection of various pollutants.
Collapse
Affiliation(s)
- Grégory Barbillon
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
| | - Hélène Cheap-Charpentier
- EPF-Ecole d’Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France;
- Laboratoire Interfaces et Systèmes Electrochimiques, Sorbonne Université, CNRS, UMR 8235, LISE, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
5
|
Molecularly-Imprinted SERS: A Potential Method for Bioanalysis. Sci Pharm 2022. [DOI: 10.3390/scipharm90030054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The most challenging step in developing bioanalytical methods is finding the best sample preparation method. The matrix interference effect of biological sample become a reason of that. Molecularly imprinted SERS become a potential analytical method to be developed to answer this challenge. In this article, we review recent progress in MIP SERS application particularly in bioanalysis. Begin with the explanation about molecular imprinting technique and component, SERS principle, the combination of MIP SERS, and follow by various application of MIP SERS for analysis. Finally, the conclusion and future perspective were also discussed.
Collapse
|
6
|
Terry LR, Sanders S, Potoff RH, Kruel JW, Jain M, Guo H. Applications of surface-enhanced Raman spectroscopy in environmental detection. ANALYTICAL SCIENCE ADVANCES 2022; 3:113-145. [PMID: 38715640 PMCID: PMC10989676 DOI: 10.1002/ansa.202200003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/11/2024]
Abstract
As the human population grows, the anthropogenic impacts from various agricultural and industrial processes produce unwanted contaminants in the environment. The accurate, sensitive and rapid detection of such contaminants is vital for human health and safety. Surface-enhanced Raman spectroscopy (SERS) is a valuable analytical tool with wide applications in environmental contaminant monitoring. The aim of this review is to summarize recent advancements within SERS research as it applies to environmental detection, with a focus on research published or accessible from January 2021 through December 2021 including early-access publications. Our goal is to provide a wide breadth of information that can be used to provide background knowledge of the field, as well as inform and encourage further development of SERS techniques in protecting environmental quality and safety. Specifically, we highlight the characteristics of effective SERS nanosubstrates, and explore methods for the SERS detection of inorganic, organic, and biological contaminants including heavy metals, pharmaceuticals, plastic particles, synthetic dyes, pesticides, viruses, bacteria and mycotoxins. We also discuss the current limitations of SERS technologies in environmental detection and propose several avenues for future investigation. We encourage researchers to fill in the identified gaps so that SERS can be implemented in a real-world environment more effectively and efficiently, ultimately providing reliable and timely data to help and make science-based strategies and policies to protect environmental safety and public health.
Collapse
Affiliation(s)
- Lynn R. Terry
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Sage Sanders
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Rebecca H. Potoff
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Jacob W. Kruel
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Manan Jain
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Huiyuan Guo
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| |
Collapse
|
7
|
Carbon Dots from Coffee Grounds: Synthesis, Characterization, and Detection of Noxious Nitroanilines. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10030113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Coffee ground (CG) waste is generated in huge amounts all over the world, constituting a serious environmental issue owing to its low biodegradability. Therefore, processes that simultaneously aim for its valorization while reducing its environmental impact are in great demand. In the current approach, blue luminescent carbon dots (C-dots) were produced in good chemical yields from CGs following hydrothermal carbonization methods under an extended set of reaction parameters. The remarkable fluorescent properties of the synthesized C-dots (quantum yields up to 0.18) allied to their excellent water dispersibility and photostability prompted their use for the first time as sensing elements for detection of noxious nitroanilines (NAs) in aqueous media. Very high levels of NA detection were achieved (e.g., limit of detection of 68 ppb for p-nitroaniline), being the regioisomeric selectivity attributed to its higher hyperpolarizability and dipole moment. Through ground–state and time-resolved fluorescence assays, a static fluorescence quenching mechanism was established. 1H NMR titration data also strongly suggested the formation of ground–state complexes between C-dots and NAs.
Collapse
|
8
|
Wang Z, Li S, Wang J, Shao Y, Mei L. A recyclable graphene/Ag/TiO 2 SERS substrate with high stability and reproducibility for detection of dye molecules. NEW J CHEM 2022. [DOI: 10.1039/d2nj02577a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Magnetron sputtering combined with the wet chemical transfer of graphene successfully prepared a multilayer composite material and an efficient photocatalytic renewable SERS substrate. It has excellent photocatalytic activity against dye molecules.
Collapse
Affiliation(s)
- Zezhou Wang
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi Province 030051, China
| | - Sha Li
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi Province 030051, China
| | - Junyuan Wang
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi Province 030051, China
| | - Yunpeng Shao
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi Province 030051, China
| | - Linyu Mei
- School of Mechanical Engineering, North University of China, Taiyuan, Shanxi Province 030051, China
| |
Collapse
|
9
|
Wang X, Chen Y, Yu R, Wang R, Xu Z. A sensitive biomimetic enzyme-linked immunoassay method based on Au@Pt@Au composite nanozyme label and molecularly imprinted biomimetic antibody for histamine detection. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1978945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Xiaofeng Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Yongfeng Chen
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Runze Yu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| | - Ruiqiang Wang
- Shandong Cayon Testing Co., Ltd., Jining, People’s Republic of China
| | - Zhixiang Xu
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Taian, People’s Republic of China
| |
Collapse
|