1
|
Kim KS, Lee JS, Han SS, Cho JY. Accurate Determination of Circulatory Lipids Using a Combination of HILIC-MRM and RPLC-PRM. Anal Chem 2025; 97:9713-9721. [PMID: 40315190 PMCID: PMC12079635 DOI: 10.1021/acs.analchem.4c06409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/21/2025] [Accepted: 04/25/2025] [Indexed: 05/04/2025]
Abstract
Circulatory lipids are important markers for characterizing disease phenotypes; however, accurately determining lipid species remains a significant challenge in lipidomic analysis. Here, we present a novel analytical workflow for accurate lipidome characterization in human plasma using mass spectrometry (MS) through the integration of hydrophilic interaction liquid chromatography (HILIC) and reversed-phase liquid chromatography (RPLC). This workflow enables rapid screening of 1,966 lipid species across 18 lipid classes using HILIC-multiple reaction monitoring (MRM), which enables facile identification of lipid species by lipid class-based separations. In the NIST Standard Reference Material for Human Plasma (SRM 1950), 489 lipid species were identified using HILIC-MRM and subsequently analyzed with RPLC-parallel reaction monitoring (PRM) to resolve potential lipid isobars within the same lipid class. Notably, RPLC-PRM identified 70 additional lipidomic features in SRM 1950 that were not detectable with HILIC-MRM. Furthermore, a high correlation (Pearson correlation coefficient = 0.81) was observed regarding the concentrations of lipid species not carrying isobaric interferences in between HILIC-MRM and RPLC-PRM, indicating that the individual lipid concentrations measured by each platform can be integrated. The workflow was further applied to a cohort of 284 human plasma samples from chronic kidney disease (CKD) patients, successfully profiling lipidomic phenotypes across CKD subtypes. These findings demonstrate that combining HILIC-MRM and RPLC-PRM as complementary platforms enhances the accuracy and comprehensiveness of lipidomic analysis.
Collapse
Affiliation(s)
- Kyeong-Seog Kim
- Department
of Biomedical Sciences, Seoul National University
College of Medicine, Seoul 03080, Republic
of Korea
- Department
of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Seoul
National University, Seoul 08826, Republic
of Korea
| | - Jae-Seung Lee
- Department
of Biomedical Sciences, Seoul National University
College of Medicine, Seoul 03080, Republic
of Korea
- Department
of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Seoul
National University, Seoul 08826, Republic
of Korea
| | - Seung Seok Han
- Department
of Internal Medicine, Seoul National University
College of Medicine, Seoul 03080, Republic
of Korea
| | - Joo-Youn Cho
- Department
of Biomedical Sciences, Seoul National University
College of Medicine, Seoul 03080, Republic
of Korea
- Department
of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, Republic of Korea
- Seoul
National University, Seoul 08826, Republic
of Korea
- Kidney
Research Institute, Seoul National University
Medical Research Center, Seoul 03080, Republic
of Korea
| |
Collapse
|
2
|
Zhou G, Zhang J, Guo H, Hu X, Wang Y, Shi K, Liu T, Yin S, Liu H, Liu C, Liu S. Discovery and Validation of Potential Serum Biomarkers for Heart Failure by Untargeted Metabolomics. Cardiovasc Ther 2024; 2024:7004371. [PMID: 39742011 PMCID: PMC11338663 DOI: 10.1155/2024/7004371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 05/21/2024] [Accepted: 06/12/2024] [Indexed: 01/03/2025] Open
Abstract
Detection of biomarkers was extremely important for the early diagnosis, prognosis, and therapy optimization of diseases. The purpose of this study was to investigate the differences in serum metabolites between patients with heart failure (HF) and healthy control (HC) and to diagnose HF qualitatively. In this study, serum samples from 83 patients with HF and 35 HCs were used as the research subjects for untargeted metabolomic analysis using ultraperformance liquid chromatography combined with quadrupole-time of flight mass spectrometry (UPLC-QTOF/MS) technology. Potential biomarkers were screened and validated using the orthogonal partial least squares discriminant analysis (OPLS-DA), random forest (RF), binary logistic regression (BLR), and receiver operating characteristic (ROC) analysis. The results indicated that a total of 43 metabolites were considered as differentially expressed metabolites (DEMs). Among these DEMs, glycodeoxycholate was identified as a specific biomarker of HF. A ROC curve analysis for HC versus HF discrimination showed an area under the ROC curve (AUC) of 0.9853 (95% CI: 0.9859-1.0000), a sensitivity of 95%, and a specificity of 100%. Hence, glycodeoxycholate might serve as a potential biomarker for HF. Furthermore, the amino acid metabolism was screened as the most significantly altered pathway in patients with HF. By identifying serum biomarkers and analyzing metabolic pathways, our study provided opportunities to enhance the understanding of the pathogenesis and early diagnosis of HF.
Collapse
Affiliation(s)
- Guisheng Zhou
- Affiliated Hospital of Nanjing University of Chinese MedicineJiangsu Province Hospital of Chinese Medicine 210029, Nanjing, China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrializationand Jiangsu Key Laboratory for High Technology Research of TCM FormulaeNanjing University of Chinese Medicine 210023, Nanjing, China
| | - Junzhi Zhang
- Affiliated Hospital of Nanjing University of Chinese MedicineJiangsu Province Hospital of Chinese Medicine 210029, Nanjing, China
- College of the First Clinical MedicineNanjing University of Chinese Medicine 210023, Nanjing, China
| | - Hongli Guo
- Pharmaceutical Sciences Research CenterDepartment of PharmacyChildren's Hospital of Nanjing Medical University 210008, Nanjing, China
| | - Xiaochao Hu
- Affiliated Hospital of Nanjing University of Chinese MedicineJiangsu Province Hospital of Chinese Medicine 210029, Nanjing, China
- College of the First Clinical MedicineNanjing University of Chinese Medicine 210023, Nanjing, China
| | - Yingzhuo Wang
- Affiliated Hospital of Nanjing University of Chinese MedicineJiangsu Province Hospital of Chinese Medicine 210029, Nanjing, China
- College of the First Clinical MedicineNanjing University of Chinese Medicine 210023, Nanjing, China
| | - Kunqun Shi
- Affiliated Hospital of Nanjing University of Chinese MedicineJiangsu Province Hospital of Chinese Medicine 210029, Nanjing, China
- College of the First Clinical MedicineNanjing University of Chinese Medicine 210023, Nanjing, China
| | - Tongtong Liu
- Affiliated Hospital of Nanjing University of Chinese MedicineJiangsu Province Hospital of Chinese Medicine 210029, Nanjing, China
- College of the First Clinical MedicineNanjing University of Chinese Medicine 210023, Nanjing, China
| | - Shengyan Yin
- College of the First Clinical MedicineNanjing University of Chinese Medicine 210023, Nanjing, China
| | - Huanhuan Liu
- Affiliated Hospital of Nanjing University of Chinese MedicineJiangsu Province Hospital of Chinese Medicine 210029, Nanjing, China
- College of the First Clinical MedicineNanjing University of Chinese Medicine 210023, Nanjing, China
| | - Chunling Liu
- Affiliated Hospital of Nanjing University of Chinese MedicineJiangsu Province Hospital of Chinese Medicine 210029, Nanjing, China
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese MedicineJiangsu Province Hospital of Chinese Medicine 210029, Nanjing, China
| |
Collapse
|
3
|
Song L, Wang J, Zhang Y, Yan X, He J, Nie J, Zhang F, Han R, Yin H, Li J, Liu H, Huang L, Li Y. Association Between Human Metabolomics and Rheumatoid Arthritis: A Systematic Review and Meta-analysis. Arch Med Res 2024; 55:102907. [PMID: 38029644 DOI: 10.1016/j.arcmed.2023.102907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/23/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE The underdiagnosis and inadequate treatment of rheumatoid arthritis (RA) can be attributed to the various clinical manifestations presented by patients. To address this concern, we conducted an extensive review and meta-analysis, focusing on RA-related metabolites. METHODS A comprehensive literature search was conducted in PubMed, the Cochrane Library, Web of Science, and Embase to identify relevant studies published up to October 5, 2022. The quality of the included articles was evaluated and, subsequently, a meta-analysis was conducted using Review Manager software to analyze the association between metabolites and RA. RESULTS Forty nine studies met the inclusion criteria for the systematic review, and six of these studies were meta-analyzed to evaluate the association between 28 reproducible metabolites and RA. The results indicated that, compared to controls, the levels of histidine (RoM = 0.83, 95% CI = 0.79-0.88, I2 = 0%), asparagine (RoM = 0.83, 95% CI = 0.75-0.91, I2 = 0%), methionine (RoM = 0.82, 95% CI = 0.69-0.98, I2 = 85%), and glycine (RoM = 0.81, 95% CI = 0.67-0.97, I2 = 68%) were significantly lower in RA patients, while hypoxanthine levels (RoM = 1.14, 95% CI = 1.09-1.19, I2 = 0%) were significantly higher. CONCLUSION This study identified histidine, methionine, asparagine, hypoxanthine, and glycine as significantly correlated with RA, thus offering the potential for the advancement of biomarker discovery and the elucidation of disease mechanisms in RA.
Collapse
Affiliation(s)
- Lili Song
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Jiayi Wang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Yue Zhang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Xingxu Yan
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Junjie He
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Jiaxuan Nie
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Fangfang Zhang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Rui Han
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Hongqing Yin
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Jingfang Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Huimin Liu
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Liping Huang
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China
| | - Yubo Li
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, West zone, Tuanbo New-City, Jinghai-District, Tianjin, China.
| |
Collapse
|
4
|
Luan H, Chen S, Zhao L, Liu S, Luan T. Precise Lipidomics Decipher Circulating Ceramide and Sphingomyelin Cycle Associated with the Progression of Rheumatoid Arthritis. J Proteome Res 2023; 22:3893-3900. [PMID: 37883661 DOI: 10.1021/acs.jproteome.3c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Rheumatoid arthritis (RA) is a long-term autoimmune condition that causes joint and surrounding tissue inflammation. Lipid mediators are involved in inflammation and deterioration of the joints. Despite attempts to discover effective drug targets to intervene with lipid metabolism in the disease, progress has been limited. In this study, precise lipidomic technology was employed to quantify a broad range of serum ceramides and sphingomyelin (SM) in a large cohort, revealing an association between the accumulation of circulating ceramides and disturbed ceramide/SM cycles during the progression of RA. In our investigation, we discovered that eight ceramides exhibited a positive correlation with the activity of RA, thereby enhancing the accuracy of RA diagnosis, particularly in patients with serum antibody-negative RA. Furthermore, the enzyme SM phosphodiesterase 3 (SMPD3) was found to disrupt the circulating SM cycle and accelerate the progression of RA. The activity of SMPD3 can be inhibited by methotrexate, resulting in decreased metabolic conversion of SM to ceramide. These findings suggest that targeting the SM cycle may provide a new therapeutic option for RA.
Collapse
Affiliation(s)
- Hemi Luan
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Shuailong Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Longshan Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shijia Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicin, Nanjing, Jiangsu 210029, China
| | - Tiangang Luan
- Department of Biomedical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
5
|
Lv M, Liang Q, Luo Z, Han B, Ni T, Wang Y, Tao L, Lyu W, Xiang J, Liu Y. UPLC-LTQ-Orbitrap-Based Cell Metabolomics and Network Pharmacology Analysis to Reveal the Potential Antiarthritic Effects of Pristimerin: In Vitro, In Silico and In Vivo Study. Metabolites 2022; 12:metabo12090839. [PMID: 36144243 PMCID: PMC9505172 DOI: 10.3390/metabo12090839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is characterized by systemic inflammation and synovial hyperplasia. Pristimerin, a natural triterpenoid isolated from plants belonging to the Celastraceae and Hippocrateaceae families, has been reported to exhibit anti-inflammation and anti-proliferation activities. Our study aims to reveal the antiarthritic effects of pristimerin and explore its potential mechanism using in vitro, in silico, and in vivo methods. In the present study, pristimerin treatment led to a dose-dependent decrease in cell viability and migration in TNF-α stimulated human rheumatoid arthritis fibroblast-like synoviocytes MH7A. Moreover, UPLC-LTQ-Orbitrap-based cell metabolomics analysis demonstrated that phospholipid biosynthesis, fatty acid biosynthesis, glutathione metabolism and amino acid metabolic pathways were involved in TNF-α induced MH7A cells after pristimerin treatment. In addition, the adjuvant–induced arthritis (AIA) rat model was employed, and the results exhibited that pristimerin could effectively relieve arthritis symptoms and histopathological damage as well as reduce serum levels of TNF-α, NO and synovial expressions of p-Akt and p-Erk in AIA rats. Furthermore, network pharmacology analysis was performed to visualize crucial protein targets of pristimerin for RA treatment, which showed that the effects were mediated through the MAPK/Erk1/2, PI3K/Akt pathways and directing binding with TNF-α. Taken together, our study not only offered new insights into the biochemical mechanism of natural compounds for RA treatment, but also provided a strategy that integrated in vitro, in silico and in vivo studies to facilitate screening of new anti-RA drugs.
Collapse
Affiliation(s)
- Mengying Lv
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
- Correspondence: (M.L.); (J.X.); (Y.L.)
| | - Qiaoling Liang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Zhaoyong Luo
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Bo Han
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, School of Pharmacy, Ministry of Education, Shihezi University, Shihezi 832002, China
| | - Tengyang Ni
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Yang Wang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Li Tao
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
| | - Weiting Lyu
- Department of Medicinal Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Jie Xiang
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Correspondence: (M.L.); (J.X.); (Y.L.)
| | - Yanqing Liu
- Department of Pharmacy, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Yangzhou 225001, China
- Correspondence: (M.L.); (J.X.); (Y.L.)
| |
Collapse
|
6
|
Alemán-Jiménez C, Domínguez-Perles R, Fanti F, Gallego-Gómez JI, Simonelli-Muñoz A, Moine E, Durand T, Crauste C, Gil-Izquierdo Á, Medina S. Unravelling the capacity of hydroxytyrosol and its lipophenolic derivates to modulate the H2O2-induced isoprostanoid profile of THP-1 monocytes by UHPLC-QqQ-MS/MS lipidomic workflow. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|