1
|
Gao Y, Zhang S, Ge B, Zhao H, Jin C, Yan H, Zhao L. Designing fluorescent covalent organic frameworks through regulation of link bond for selective detection of Al 3+ and Ce 3. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125620. [PMID: 39740394 DOI: 10.1016/j.saa.2024.125620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
The high thermal stability and chemical durability of amide-linked covalent organic frameworks (amide COFs) make them a promising material for a range of new applications. Nevertheless, the low reversibility of the amide bond presents a significant challenge to the direct synthesis of amide-bonded COFs. In this paper, we present a simple method for synthesizing amide COFs. The synthesis of imine-linked COFs was initially achieved through the reaction of 2,4,6-tris(4-aminophenyl)-1,3,5-triazine and 2,5-dimethoxybenzene-1,4-dicarboxaldehyde. Subsequently, amide COFs were synthesized via the oxidation of the imine bond into an amide bond, utilizing ammonium persulfate as the oxidizing agent. Due to the difference of link bond, two COFs separately displayed distinct and significant fluorescence enhancement for Al3+ and Ce3+, which was highly sensitive and less affected by environmental factors. The strategy offers a novel approach to the convenient and environmentally benign synthesis of amide COFs, which may facilitate their wider applications.
Collapse
Affiliation(s)
- Yingwei Gao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Shuo Zhang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Bo Ge
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Hui Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Chuanyu Jin
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Hui Yan
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Limin Zhao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, PR China.
| |
Collapse
|
2
|
Lian M, Tian L, Huang G, Liang S, Zhang Y, Yi N, Fan L, Wu Q, Gan F, Wu Y. Recent Advances in Fluorescent Polyimides. Molecules 2024; 29:4072. [PMID: 39274921 PMCID: PMC11397098 DOI: 10.3390/molecules29174072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
Polyimide (PI) refers to a type of high-performance polymer containing imide rings in the main chain, which has been widely used in fields of aerospace, microelectronic and photonic devices, gas separation technology, and so on. However, traditional aromatic PIs are, in general, the inefficient fluorescence or even no fluorescence, due to the strong inter- and intramolecular charge transfer (CT) interactions causing unavoidable fluorescence quenching, which greatly restricts their applications as light-emitting functional layers in the fabrication of organic light-emitting diode (OLED) devices. As such, the development of fluorescent PIs with high fluorescence quantum efficiency for their application fields in the OLED is an important research direction in the near future. In this review, we provide a comprehensive overview of fluorescent PIs as well as the methods to improve the fluorescence quantum efficiency of PIs. It is anticipated that this review will serve as a valuable reference and offer guidance for the design and development of fluorescent PIs with high fluorescence quantum efficiency, ultimately fostering further progress in OLED research.
Collapse
Affiliation(s)
- Manyu Lian
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Liyong Tian
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Guotao Huang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Siming Liang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yangfan Zhang
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Ningbo Yi
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Longfei Fan
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Qinghua Wu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Feng Gan
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yancheng Wu
- College of Textile Science and Engineering, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
3
|
Huang Y, Feng D, Li X, Li W, Ren J, Zhong H. Covalent organic frameworks assisted for food safety analysis. Crit Rev Food Sci Nutr 2023; 64:11006-11025. [PMID: 37417398 DOI: 10.1080/10408398.2023.2230506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Food safety incidents threaten human health and life safety. It is an effective method to prevent and control the occurrence of food safety events by enhancing the rapid and sensitive detection of food contaminants. Emerging porous materials provide for the development of efficient and stable detection methods. Covalent organic frameworks (COFs) are favored by researchers for their highly ordered pore structure, large specific surface area, and good structural and functional designability. Especially in the sensing field, COFs play the roles of carriers, conductors, quenchers, and reporters, and have broad application prospects. To better understand COFs-based sensing studies, this review briefly introduces the characteristics and different functional roles of COFs in food safety analysis, focusing on the applications of COFs in the detection of various food contaminants (including foodborne pathogens, mycotoxins, pesticides, antibiotics, heavy metals, and others). Finally, the challenges and opportunities for COFs-based sensing are discussed to facilitate further applications and development of COFs in food safety.
Collapse
Affiliation(s)
- Ying Huang
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Donghui Feng
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Xu Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Wang Li
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Jiali Ren
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| | - Haiyan Zhong
- Hunan Province Key Laboratory of Edible Forestry Resources Safety and Processing Utilization, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, PR China
| |
Collapse
|
4
|
Zanganeh AR. COF-42 as sensory material for voltammetric determination of Cu(II) ion: optimizing experimental condition via central composite design. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Yan Z, Xie J, Geng T, Feng B, Cui B, Li N, Su P, Bu N, Yuan Y, Xia L. Decorating Porous Aromatic Framework Cavities with Long‐Chain Alkyl Grippers for Rapid and Selective Iron(III) Detection. ChemistrySelect 2022. [DOI: 10.1002/slct.202201331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhuojun Yan
- College of Chemistry Liaoning University 110036 Shenyang Liaoning P. R. China
| | - Jialin Xie
- College of Chemistry Liaoning University 110036 Shenyang Liaoning P. R. China
| | - Tongfei Geng
- College of Chemistry Liaoning University 110036 Shenyang Liaoning P. R. China
| | - Bin Feng
- College of Chemistry Liaoning University 110036 Shenyang Liaoning P. R. China
| | - Bo Cui
- College of Chemistry Liaoning University 110036 Shenyang Liaoning P. R. China
| | - Na Li
- College of Chemistry Liaoning University 110036 Shenyang Liaoning P. R. China
| | - Pinjie Su
- School of Environmental Science Liaoning University 110036 Shenyang Liaoning P. R. China
| | - Naishun Bu
- School of Environmental Science Liaoning University 110036 Shenyang Liaoning P. R. China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry Northeast Normal University 130024 Changchun, Jilin P. R. China
| | - Lixin Xia
- College of Chemistry Liaoning University 110036 Shenyang Liaoning P. R. China
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation Yingkou Institute of Technology 115014 Yingkou Liaoning P. R. China
| |
Collapse
|
6
|
Electrochemical (Bio)Sensors Based on Covalent Organic Frameworks (COFs). SENSORS 2022; 22:s22134758. [PMID: 35808255 PMCID: PMC9268951 DOI: 10.3390/s22134758] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
Covalent organic frameworks (COFs) are defined as crystalline organic polymers with programmable topological architectures using properly predesigned building blocks precursors. Since the development of the first COF in 2005, many works are emerging using this kind of material for different applications, such as the development of electrochemical sensors and biosensors. COF shows superb characteristics, such as tuneable pore size and structure, permanent porosity, high surface area, thermal stability, and low density. Apart from these special properties, COF’s electrochemical behaviour can be modulated using electroactive building blocks. Furthermore, the great variety of functional groups that can be inserted in their structures makes them interesting materials to be conjugated with biological recognition elements, such as antibodies, enzymes, DNA probe, aptamer, etc. Moreover, the possibility of linking them with other special nanomaterials opens a wide range of possibilities to develop new electrochemical sensors and biosensors.
Collapse
|
7
|
Zhang S, Liu D, Wang G. Covalent Organic Frameworks for Chemical and Biological Sensing. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082586. [PMID: 35458784 PMCID: PMC9029239 DOI: 10.3390/molecules27082586] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of crystalline porous organic polymers with polygonal porosity and highly ordered structures. The most prominent feature of the COFs is their excellent crystallinity and highly ordered modifiable one-dimensional pores. Since the first report of them in 2005, COFs with various structures were successfully synthesized and their applications in a wide range of fields including gas storage, pollution removal, catalysis, and optoelectronics explored. In the meantime, COFs also exhibited good performance in chemical and biological sensing, because their highly ordered modifiable pores allowed the selective adsorption of the analytes, and the interaction between the analytes and the COFs’ skeletons may lead to a detectable change in the optical or electrical properties of the COFs. In this review, we firstly demonstrate the basic principles of COFs-based chemical and biological sensing, then briefly summarize the applications of COFs in sensing some substances of practical value, including some gases, ions, organic compounds, and biomolecules. Finally, we discuss the trends and the challenges of COFs-based chemical and biological sensing.
Collapse
Affiliation(s)
- Shiji Zhang
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China;
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150080, China;
- Correspondence: (D.L.); (G.W.)
| | - Guangtong Wang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing (Ministry of Education), Harbin Institute of Technology, Harbin 150080, China
- Correspondence: (D.L.); (G.W.)
| |
Collapse
|
8
|
Zhu XY, Yang XN, Luo Y, Redshaw C, Liu M, Tao Z, Xiao X. Construction of a Supramolecular Fluorescence Sensor from Water‐soluble Pillar[5]arene and 1‐Naphthol for Recognition of Metal Ions. ChemistrySelect 2021. [DOI: 10.1002/slct.202103744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xin Yi Zhu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Xi Nan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Carl Redshaw
- Department of Chemistry University of Hull Cottingham Rd Hull HU6 7RX, U.K
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province Guizhou University
| |
Collapse
|