1
|
Shen H, Liu J, Pan P, Yang X, Yang Z, Li P, Liu G, Zhang X, Zhou J. One-step synthesis of nanosilver embedding laser-induced graphene for H 2O 2 sensor. SYNTHETIC METALS 2023; 293:117235. [PMID: 36567724 PMCID: PMC9768471 DOI: 10.1016/j.synthmet.2022.117235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
During the novel coronavirus pandemic, hydrogen peroxide (H2O2) played an important role as a disinfectant. However, high concentrations of H2O2 can also cause damage to the skin and eyes. Therefore, the quantitative and qualitative detection of H2O2 is an important research direction. In this work, we report a one-step laser-induced synthesis of graphene doped with Ag NPs composites. It directly trims screen printed electrodes (SPE). Firstly, we did the timekeeping current method (CA) test on H2O2 using a conventional platinum sheet as the counter electrode, and obtained linear ranges of 1-110 μM and 110-800 μM with a sensitivity of 118.7 and 96.3 μAmM-1cm-2 and a low detection limit of (LOD) 0.24 μM and 0.31 μM. On this basis we have also achieved a good result in CA testing using Screen printed carbon electrodes (SPCE), laying the foundation for portable testing. The sensor has excellent interference immunity and high selectivity.
Collapse
Affiliation(s)
- Haodong Shen
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Jun Liu
- School of Electrical Engineering and Automation, Tianjin University of Technology, Tianjin 300384, China
| | - Peng Pan
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaoping Yang
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Zhengchun Yang
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Peng Li
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Guanying Liu
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Xiaodong Zhang
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| | - Jie Zhou
- School of Integrated Circuit Science and Engineering, Advanced Materials and Printed Electronics Center, Tianjin Key Laboratory of Film Electronic & Communication Devices, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
2
|
Yang H, Li K, Wang Y, Yuan X, Zhang M. A label-free strategy for H2O2 assay by chemical vapor generation-atomic fluorescence spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Mohiuddin AK, Jeon S. Highly efficient Ag doped δ-MnO 2 decorated graphene: Comparison and application in electrochemical detection of H 2O 2. APPLIED SURFACE SCIENCE 2022; 592:153162. [PMID: 35370331 PMCID: PMC8959659 DOI: 10.1016/j.apsusc.2022.153162] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Cytotoxic H2O2 is an inevitable part of our life, even during this contemporary pandemic COVID-19. Personal protective equipment of the front line fighter against coronavirus could be sterilized easily by H2O2 for reuse. In this study, Ag doped δ-MnO2 nanorods supported graphene nanocomposite (denoted as Ag@δ-MnO2/G) was synthesized as a nonenzymatic electrochemical sensor for the sensitive detection of H2O2. The ternary nanocomposite has overcome the poor electrical conductivity of δ-MnO2 and also the severe aggregation of Ag NPs. Furthermore, δ-MnO2/G provided a rougher surface and large numbers of functional groups for doping more numbers of Ag atoms, which effectively modulate the electronic properties of the nanocomposite. As a result, electroactive surface area and electrical conductivity of Ag@δ-MnO2/G increased remarkably as well as excellent catalytic activity observed towards H2O2 reduction. The modified glassy carbon electrode exhibited fast amperometric response time (<2 s) in H2O2 determination. The limit of detection was calculated as 68 nM in the broad linear range (0.005-90.64 mM) with high sensitivity of 104.43 µA mM-1 cm-2. No significant interference, long-term stability, excellent reproducibility, satisfactory repeatability, practical applicability towards food samples and wastewater proved the efficiency of the proposed sensor.
Collapse
Affiliation(s)
- Abdul Kader Mohiuddin
- Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seungwon Jeon
- Department of Chemistry and Institute of Basic Science, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|