1
|
Kumari S, Nehra M, Jain S, Sheokand A, Dilbaghi N, Chaudhary GR, Kim KH, Kumar S. Luminescent Cu nanoclusters-encapsulated ZIF-8 as on-off-on fluorescent probe for efficient and selective quantification of E. coli. Mikrochim Acta 2025; 192:56. [PMID: 39775967 DOI: 10.1007/s00604-024-06905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Rapid and accurate detection of Escherichia coli (E. coli) is critical for maintaining water quality, and protecting aquatic ecosystems and public health. This research focuses on the development of a Förster resonance energy transfer (FRET)-based "turn-on" fluorescent nanosensor for real time, sensitive detection of E. coli. Copper nanoclusters-encapsulated metal organic frameworks (CuNCs@ZIF-8) were sythesized as a fluorescent donor with excellent luminescence properties. Further, MnO2 nanospheres were synthesized as a receptor with good adsorption and quenching abilities. This novel nanoconjugate (CuNCs@ZIF-8@ MnO2) was employed for the construction of a sensitive, accurate, and rapid sensing platform against E. coli in water on the basis of p-benzoquinone/hydroquinone (p-BQ/HQ) redox pair formation. Fluorescence is quenched by energy transfer when MnO2 nanospheres are added to CuNCs@ZIF-8. Upon contact with E. coli, NADH-quinone reductase converts p-BQ to HQ, which reduces MnO2 to Mn2+, releasing the nanospheres and restoring fluorescence in the composite. Based on this FRET ON-OFF-ON fluorescent probe, E. coli can be detected across a broad concentration range (5 × 101 to 5 × 105 CFU/mL), with a detection limit as low as 8 CFU/mL within 50 min. The sensor's practicality was verified through the investigation of E. coli in real water samples, with recoveries in the range 94.3 to 106.5%. This approach offers an efficient method for on-site detection and quantification of E. coli in both environment and food safety domains.
Collapse
Affiliation(s)
- Sonam Kumari
- Department of Chemistry and Center of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Monika Nehra
- Department of Mechanical Engineering, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, India
| | - Shikha Jain
- Department of Bio-Nanotechnology, College of Biotechnology, CCS Haryana Agricultural University (CCSHAU), Hisar, Haryana, 125004, India
| | - Annu Sheokand
- Department of Physics, COBS & H., CCS Haryana Agricultural University, Hisar, 125004, India
| | - Neeraj Dilbaghi
- Department of Biotechnology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Ganga Ram Chaudhary
- Department of Chemistry and Center of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Sandeep Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh, 160012, India.
| |
Collapse
|
2
|
Wang C, Wang X, Jiang Y, Wu Z, Yang J, Wei S, Wang Z, Sun G. Ionic liquid-based yellow-emitting carbon dots for fluorescence-smartphone dual-mode detection of vitamin B6 in milk. Food Chem 2024; 460:140525. [PMID: 39047472 DOI: 10.1016/j.foodchem.2024.140525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The determination of vitamin B6 (VB6) in food is of great significance due to its vital role in maintaining health and its necessity for ingestion through dietary sources. Therefore, based on ionic liquid-based yellow-emitting carbon dots (Y-CDs), a novel fluorescence-smartphone dual-mode method was first developed. The present method was applied to the detection of VB6 in milk. In the fluorescence method, the formation of complexes between VB6 and Y-CDs results in a significant decrease of the fluorescence intensity of Y-CDs. VB6 in milk samples was successfully determined according to this method, which exhibited a low detection limit (5 × 10-5 mg/mL) and excellent recoveries (98.80%-103.80%), demonstrating its feasibility in real sample analysis. In addition, the smartphone-based analysis method was established by researching the correlation between different VB6 concentrations and the (R + B) values of Y-CDs. When this method was applied, the detection process of VB6 was simplified. By combining the two methods, the possibility of incorrect analysis results can be effectively reduced, and the reliability of detection results can be improved through cross-validation of the two methods. Compared with traditional chromatography and electrochemical methods, the dual-mode method was more rapid, convenient, accurate, and suitable for the detection of VB6.
Collapse
Affiliation(s)
- Chenzhao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Xiujuan Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Yuhao Jiang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Zhiyu Wu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Jiawei Yang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Zhibing Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| |
Collapse
|
3
|
Banerjee B, Ali A, Kumar S, Verma RK, Verma VK, Singh RC. Tellurium Containing Long Lived Emissive Fluorophore for Selective and Visual Detection of Picric Acid through Photo-Induced Electron Transfer. Chempluschem 2024; 89:e202400035. [PMID: 38552142 DOI: 10.1002/cplu.202400035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/29/2024] [Indexed: 04/28/2024]
Abstract
A novel tellurium (Te) containing fluorophore, 1 and its nickel (2) and copper (3) containing metal organic complex (MOC) have been synthesized to exploit their structural and optical properties and to deploy these molecules as fluorescent probes for the selective and sensitive detection of picric acid (PA) over other commonly available nitro-explosives. Furthermore, density functional theory (DFT) and single crystal X-ray diffraction (SCXRD) techniques revealed the inclusion of "soft" Tellurium (Te) and "hard" Nitrogen (N), Oxygen (O) atoms in the molecular frameworks. Owing to the presence of electron rich "N" and "O" atoms along with "Te" in the molecular framework, 1 could efficiently and selectively sense PA with more than 80 % fluorescence quenching efficiency in organic medium and having detection limit of 4.60 μM. The selective detection of PA compared to other nitro-explosives follows a multi-mechanism based "turn-off" sensing which includes photo-induced electron transfer (PET), electrostatic (π-π stacking and π-anion/cation) interaction, intermolecular hydrogen bonding and inner filter effect (IFE). The test strip study also establishes the sensitivity of 1 for detection of PA.
Collapse
Affiliation(s)
- Bhaskar Banerjee
- Department of Forensic Science, Sharda University, Greater Noida, 201306, India
| | - Afsar Ali
- Department of Chemistry and Biochemistry, Sharda University, Greater Noida, 201306, India
| | - Sandeep Kumar
- Department of Chemistry, University of Delhi, New Delhi, 110007, India
| | | | - Vinay Kumar Verma
- Department of Chemistry and Biochemistry, Sharda University, Greater Noida, 201306, India
| | - Ram Chandra Singh
- Department of Physics, Sharda University, Greater Noida, 201306, India
| |
Collapse
|
4
|
Nijil S, Felicitus S, Kini S. Fluorometric investigation of boric acid-pyridoxal 5′ phosphate interaction: A turn-on-fluorescence assay for the detection of boric acid in water bodies and fetal bovine serum. Microchem J 2023; 194:109254. [DOI: 10.1016/j.microc.2023.109254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
|
5
|
Patel DA, Anand T, Sk AK, Sahoo SK. Fluorescence Sensing of pH and p-Nitrophenol Using an AIEE Active Pyridoxal Derived Schiff Base. J Fluoresc 2023; 33:1431-1441. [PMID: 36745310 DOI: 10.1007/s10895-023-03167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/02/2023] [Indexed: 02/07/2023]
Abstract
An easy-to-prepare aggregation-induced emission enhancement (AIEE) active Schiff base NPY was synthesized by condensing vitamin B6 cofactor pyridoxal with 3-hydroxy-2-naphthoic hydrazide, and employed for the fluorescent sensing of pH and p-nitrophenol (p-NP). The AIEE phenomenon of NPY was investigated in mixed DMSO/H2O medium. The weakly yellow-fluorescent NPY (λem = 535 nm) in pure DMSO turned to a bright cyan-fluorescent NPY (λem = 490 nm) upon addition of poor solvent water. The DLS and SEM analyses supported the self-aggregation of NPY that restricted the intramolecular rotation and activated the excited state intramolecular proton transfer (ESIPT) process. The AIEE luminogen (AIEEgen) NPY containing 90% of water fraction (fwater) was employed for the fluorescent sensing of pH. AIEEgen NPY displays three distinct fluorescent pH windows: non-fluorescent below pH 3.0 and above pH 10.0, cyan fluorescent between pH 3.0 to 8.0, and yellow fluorescent between pH 8.0 to 10.0. AIEEgen NPY was also applied for the detection of nitroaromatics in HEPES buffer (10% DMSO, 10 mM, pH 7.0). The addition of p-NP selectively quenched the fluorescent intensity of AIEEgen NPY with an estimated detection limit of 1.73 µM. The analytical utility of AIEEgen NPY was examined by quantifying p-NP in different real water samples.
Collapse
Affiliation(s)
- Dhvani A Patel
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India
| | - Thangaraj Anand
- Department of Chemistry, Sathyabama Institute of Science and Technology, 600119, Chennai, India
| | - Ashok Kumar Sk
- Department of Chemistry, School of Advance Sciences, Vellore Institute of Technology, 632014, Vellore, Tamil Nadu, India
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute Technology, 395007, Surat, Gujarat, India.
| |
Collapse
|
6
|
Cai Z, Zhang Y, Jin M, Hao M, Yang H, Peng Y, Lu J, Zhang Y, Dong J, Ren J, Zhang R, Wang Y. Preparation of blue fluorescent copper nanoclusters for sensitive and selective sensing of apigenin in pharmaceutical samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 300:122940. [PMID: 37267837 DOI: 10.1016/j.saa.2023.122940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/04/2023]
Abstract
One-pot means was performed for the rapid preparation of copper nanoclusters (Cu NCs), which were employed as a fluorescence system for the sensitive apigenin measurement in pharmaceutical samples. Herein, CuCl2 aqueous solution was reduced to Cu NCs through ascorbic acid and the Cu NCs were protected through trypsin under 65 ℃ for 4 h. The entire preparation process was rapid, facile and environmentally friendly. The trypsin-capped Cu NCs were demonstrated through ultraviolet-visible spectroscopy, fluorescence spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and fluorescence lifetime, respectively. The Cu NCs revealed blue fluorescence with emission wavelength around 465 nm under the excitation wavelength of 380 nm. The fluorescence weakening feature of Cu NCs with apigenin was observed. On this basis, a facile and sensitive turn-off fluorescent nanoprobe for the sensing of apigenin in real samples was developed. The logarithm of relative fluorescence intensity revealed a good linear relationship with apigenin contents from 0.5 μM to 300 μM with the detection limit of 0.079 μM. The Cu NCs-based fluorescent nanosensor have been employed to measure the apigenin amounts in real samples such as medical saline, bovine and human serum. The results revealed excellent potential of this Cu NCs-based fluorescent nanoprobe for the convention computation of apigenin amounts in real samples.
Collapse
Affiliation(s)
- Zhifeng Cai
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, P. R. China
| | - Yi Zhang
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, 441053, Hubei Province, P. R. of China.
| | - Meiling Jin
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, P. R. China
| | - Meiling Hao
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, P. R. China
| | - Huijuan Yang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, P. R. China
| | - Yang Peng
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, P. R. China
| | - Jingwen Lu
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, P. R. China
| | - Yaofang Zhang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, P. R. China
| | - Jiaxu Dong
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, P. R. China
| | - Jiali Ren
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, P. R. China
| | - Ran Zhang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, P. R. China
| | - Ya Wang
- College of Chemistry and Materials, Taiyuan Normal University, Jinzhong 030619, P. R. China
| |
Collapse
|
7
|
Fluorescence Turn-on Detection of Alkaline Phosphatase Activity and Al 3+ Using Vitamin B 6 Cofactor Conjugated GSH Capped Mn-doped ZnS Quantum Dots. J Fluoresc 2023; 33:587-594. [PMID: 36456791 DOI: 10.1007/s10895-022-03051-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/20/2022] [Indexed: 12/04/2022]
Abstract
The glutathione (GSH) functionalized Mn-doped ZnS quantum dots (GSH_Mn_ZnS QDs) was conjugated with pyridoxal 5'-phosphate (PLP). The -CHO group of vitamin B6 cofactor PLP interacted with the -NH2 group of GSH functionalized Mn_ZnS QDs. The conjugation of PLP quenched the fluorescence emission of GSH_Mn_ZnS QDs at 601 nm. Addition of alkaline phosphatase (ALP) catalytically dephosphorylated the PLP into pyridoxal that restored the fluorescence emission of GSH_Mn_ZnS QDs. With a sensitivity of 0.035 U/L, the PLP conjugated GSH_Mn_ZnS QDs was applied to quantify ALP activity in human serum and plasma. Further, the developed nanoprobe PLP conjugated GSH_Mn_ZnS QDs was also applied to detect Al3+. The complexation-induced fluorescence enhancement was observed at 492 nm upon the interaction of Al3+ with the PLP conjugated GSH_Mn_ZnS QDs. Without any interference from other tested metal ions, this nanoprobe can be employed to detect Al3+ down to 2.30 µM.
Collapse
|
8
|
Yu W, Kuang J, Hu Q, Wang Z, Liao Y, Cheng Z. Ratiometric Detection of Al Based on the Mixing of D‐penicillamine‐Functionalized Copper Nanoclusters with Pyridoxal 5’‐phosphate. ChemistrySelect 2022. [DOI: 10.1002/slct.202203721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Weihua Yu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Jianhua Kuang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Qingqing Hu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Yunwen Liao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
| | - Zhengjun Cheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong 637002 China
- Institute of Applied Chemistry China West Normal University Nanchong 637002 China
| |
Collapse
|
9
|
Pu S, Xia C, Wu L, Xu K. CuNCs modified with dual-ligand to achieve fluorescence visualization detection of Tin (Ⅳ). Microchem J 2022. [DOI: 10.1016/j.microc.2022.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Tuning Zn(Ⅱ) selectivity by conjugating vitamin B6 cofactors over bovine serum albumin stabilized red-emitting silver nanoclusters. Anal Chim Acta 2022; 1235:340538. [DOI: 10.1016/j.aca.2022.340538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/19/2022]
|
11
|
Zhai H, Gao M, Bai Y, Qin J, Song Q, Liu Z, Wang H, Feng F. Development of fluorescence sensors with copper-based nanoclusters via Förster resonance energy transfer and the quenching effect for vanillin detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4245-4251. [PMID: 36250613 DOI: 10.1039/d2ay01170k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two kinds of copper-based metal fluorescent nanoclusters were successfully prepared by the chemical reduction method; one of them (CuNCs) was synthesized by direct reduction of copper sulfate, and the other (CuAuNCs) was synthesized by the stepwise addition of copper salt and chloroauric acid. CuNCs were used to establish the fluorescence resonance energy transfer (FRET) system with neutral red (NR) due to the supramolecular effect of β-cyclodextrin (β-CD) modified on the surface of CuNCs. NR could enter the hydrophobic cavity of β-CD and narrow the distance between CuNCs and NR, which could lead to FRET. Fluorescence was transferred from CuNCs to NR, resulting in amplification of the NR fluorescence signal, which could be used to detect vanillin. In addition, CuAuNCs with strong fluorescence were used as fluorescent probes to detect vanillin through the quenching mechanism. By comparison, the simplicity of CuNC synthesis and the high selectivity of β-CD made the FRET method more practical, which may provide a new strategy for assaying vanillin.
Collapse
Affiliation(s)
- Hong Zhai
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Mengmeng Gao
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Yunfeng Bai
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Jun Qin
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Qing Song
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Zhixiong Liu
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Haiyan Wang
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| | - Feng Feng
- College of Chemistry and Chemical Engineering, Shanxi Provincial Key Laboratory of Chemical Biosensing, Shanxi Datong University, Datong, 037009, China.
| |
Collapse
|
12
|
Zhang S, Jin ML, Gao YX, Li WQ, Wang XY, Li XX, Qiao JQ, Peng Y. Histidine-capped fluorescent copper nanoclusters: an efficient sensor for determination of furaltadone in aqueous solution. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Trypsin stabilized copper nanoclusters as a highly sensitive and selective probe for fluorescence sensing of morin and temperature. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|