1
|
Salma U, Alam MZ, Ahmad S, Mohasin M, Khan SA. Recent Progress in Triazole Based Chromogenic and Fluorogenic Chemosensor for the Detection of Hg 2+ Metal ion: A Review. J Fluoresc 2025:10.1007/s10895-025-04269-z. [PMID: 40257515 DOI: 10.1007/s10895-025-04269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/18/2025] [Indexed: 04/22/2025]
Abstract
Triazole, a heterocyclic organic molecule containing nitrogen, exhibits strong coordination abilities with various metal ions. Several synthetic techniques, including Claisen-Schmidt condensation, Huisgen-1,3-dipolar cycloaddition reaction (CuAAC), Pellizzari synthesis, Einhorn-Brunner synthesis, Dimroth rearrangement and Boulton-Katritzky Rearrangement have been employed to synthesize triazole derivatives. Experimental and spectroscopic investigations have demonstrated that triazole possesses a high binding affinity for heavy metal ions such as Pb2+, Hg2+, Cd2+, Cu2+ and Al3+. The increasing environmental pollution caused by the uncontrolled discharge of heavy metal ions into water bodies and open spaces poses a serious threat to ecosystem and public health. To address this issue, a cost-effective and efficient chemosensor based on triazole has been developed for selective detection of toxic heavy metal ions. Notably, triazole exhibits fluorescence quenching or enhancement upon interaction with the Hg2+ ions, attributed to changes in its absorption and emission spectra upon coordination. This unique photophysical behaviour makes triazole-based probes valuable tools for monitoring Hg2+ ions in environmental and biological samples. This review provides a comprehensive overview of triazole-based fluorescent chemosensors for Hg2+ ions detection, covering advancements made between 2010-2025. The study highlights the high specificity, excellent sensitivity, and low detection limits of these sensors, emphasizing their potential for practical applications in environmental monitoring and analytical chemistry.
Collapse
Affiliation(s)
- Umme Salma
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| | - Md Zafer Alam
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India.
| | - Suhail Ahmad
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| | - Md Mohasin
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| | - Salman A Khan
- Department of Chemistry, School of Sciences, Maulana Azad National Urdu University, Hyderabad, 500032, Telangana, India
| |
Collapse
|
2
|
Yang M, Tang Z, Yu C, Zhang J. A Novel Rhodamine B Fluorescent Probe Derived from Carboxymethyl Chitosan for the Selective Detection of Fe 3. Polymers (Basel) 2024; 16:3206. [PMID: 39599296 PMCID: PMC11598419 DOI: 10.3390/polym16223206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
In this study, we synthesized a fluorescent material by modifying the C-2 amino group of carboxymethyl chitosan with a rhodamine B derivative, which was proposed and demonstrated using 1H NMR and FT-IR measurements. A series of experiments including selectivity, sensitivity, reversibility, pH, and water content were conducted to investigate the fluorometric and colorimetric properties of the grafted polymer. Utilizing a Fe3+-induced ring-opening mechanism of the rhodamine B spirolactam, we found that the grafted polymer exhibited a highly selective fluorescence response to Fe3+, with enhanced fluorescence at 583 nm compared to other tested metal ions and anions, accompanied by the characteristic absorption peak of rhodamine B that appeared at 561 nm with a noticeable color change from colorless to pink, facilitating visual observation. Additionally, the modified probe, composed of carboxymethyl chitosan, was easily regenerated through treatment with EDTA.
Collapse
Affiliation(s)
| | | | - Chunwei Yu
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (M.Y.); (Z.T.)
| | - Jun Zhang
- NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, Hainan Medical University, Haikou 571199, China; (M.Y.); (Z.T.)
| |
Collapse
|
3
|
Hu G, Xu HD, Fang J. Sulfur-based fluorescent probes for biological analysis: A review. Talanta 2024; 279:126515. [PMID: 39024854 DOI: 10.1016/j.talanta.2024.126515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
The widespread adoption of small-molecule fluorescence detection methodologies in scientific research and industrial contexts can be ascribed to their inherent merits, including elevated sensitivity, exceptional selectivity, real-time detection capabilities, and non-destructive characteristics. In recent years, there has been a growing focus on small-molecule fluorescent probes engineered with sulfur elements, aiming to detect a diverse array of biologically active species. This review presents a comprehensive survey of sulfur-based fluorescent probes published from 2017 to 2023. The diverse repertoire of recognition sites, including but not limited to N, N-dimethylthiocarbamyl, disulfides, thioether, sulfonyls and sulfoxides, thiourea, thioester, thioacetal and thioketal, sulfhydryl, phenothiazine, thioamide, and others, inherent in these sulfur-based probes markedly amplifies their capacity for detecting a broad spectrum of analytes, such as metal ions, reactive oxygen species, reactive sulfur species, reactive nitrogen species, proteins, and beyond. Owing to the individual disparities in the molecular structures of the probes, analogous recognition units may be employed to discern diverse substrates. Subsequent to this classification, the review provides a concise summary and introduction to the design and biological applications of these probe molecules. Lastly, drawing upon a synthesis of published works, the review engages in a discussion regarding the merits and drawbacks of these fluorescent probes, offering guidance for future endeavors.
Collapse
Affiliation(s)
- Guodong Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu, 210094, China.
| |
Collapse
|
4
|
Jiang Q, Song J, Yang X, Rao X, Zhao P, Wang Z. A novel reversible fluorescent probe for sequential detection of Al 3+ and HPO 42- based on caffeic acid and its applicability in cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123627. [PMID: 37950967 DOI: 10.1016/j.saa.2023.123627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023]
Abstract
In this work, we focused on synthesizing a new fluorescent probe HBA based on caffeic acid for detecting Al3+/HPO42- by the mode of "off-on-off". HBA alone exhibited a weak fluorescence emission in aqueous solution. When Al3+ was added into the HBA solution, a significant green fluorescence was found at 498 nm. However, the introduction of HPO42- to the solution of [HBA-Al3+] complex induced the disappearance of green fluorescence. The detection limit of HBA was calculated as low as 41.7 nM for Al3+ and 62.1 nM for HPO42-, respectively. Probe HBA exhibited good cell-membrane penetrability and had the potential to trace Al3+/HPO42- in biological systems.
Collapse
Affiliation(s)
- Qian Jiang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China
| | - Jian Song
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China
| | - Xiaoqin Yang
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China
| | - Xiaoping Rao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, PR China
| | - Ping Zhao
- Key Laboratory of State Forestry and Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, PR China
| | - Zhonglong Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
5
|
Song J, Yang X, Xie S, Zhu G, Rao X, Zhao P, Jiang Q. A novel "turn on" fluorescence probe based on a caffeic acid skeleton for detecting Al 3+ and bioimaging application. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37366088 DOI: 10.1039/d3ay00643c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The specificity detection of Al3+ is important for monitoring life health and environmental pollution. A fluorescence enhancement probe based on caffeic acid HAM was synthesized for detecting Al3+ with high sensitivity and good selectivity. When Al3+ was added in the aqueous solution of HAM, the formation of HAM-Al3+ complexes inhibited the PET process, which led to great enhancement of fluorescence. The addition of other metal ions cannot induce the change of fluorescence intensity. The sensing mechanism was proved by 1H NMR titration, MS, and Job's plot. Moreover, probe HAM exhibited excellent properties, such as high sensitivity (LOD = 0.168 μM), fast response time (30 s), wide pH range (3-11), and good interference ability. Based on the above results, probe HAM was used to explore its bioimaging application in biological samples.
Collapse
Affiliation(s)
- Jian Song
- Key Laboratory of State Forestry, Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China.
| | - Xiaoqin Yang
- Key Laboratory of State Forestry, Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China.
| | - Sida Xie
- Key Laboratory of State Forestry, Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China.
| | - Guolei Zhu
- Key Laboratory of State Forestry, Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China.
| | - Xiaoping Rao
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Ping Zhao
- Key Laboratory of State Forestry, Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China.
| | - Qian Jiang
- Key Laboratory of State Forestry, Grassland Administration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming 650224, P. R. China.
| |
Collapse
|
6
|
Chen Y, Zheng S, Kim MH, Chen X, Yoon J. Recent progress of TP/NIR fluorescent probes for metal ions. Curr Opin Chem Biol 2023; 75:102321. [PMID: 37196449 DOI: 10.1016/j.cbpa.2023.102321] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/07/2023] [Accepted: 04/17/2023] [Indexed: 05/19/2023]
Abstract
Metal ions are of significance in various pathological and physiological processes. As such, it is crucial to monitor their levels in organisms. Two-photon (TP) and near-infrared (NIR) fluorescence imaging has been utilized to monitor metal ions because of minimal background interference, deeper tissue depth penetration, lower tissue self-absorption, and reduced photodamage. In this review, we briefly summarize recent progress from 2020 to 2022 of TP/NIR organic fluorescent probes and inorganic sensors in the detection of metal ions. Additionally, we present an outlook for the development of TP/NIR probes for bio-imaging, diagnosis of diseases, imaging-guided therapy, and activatable phototherapy.
Collapse
Affiliation(s)
- Yahui Chen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea; New and Renewable Energy Research Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Shiyue Zheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Myung Hwa Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea; New and Renewable Energy Research Center, Ewha Womans University, Seoul, 03760, South Korea
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing, 211816, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea.
| |
Collapse
|
7
|
Hawtrey T, New EJ. Molecular probes for fluorescent sensing of metal ions in non-mammalian organisms. Curr Opin Chem Biol 2023; 74:102311. [PMID: 37146433 DOI: 10.1016/j.cbpa.2023.102311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 05/07/2023]
Abstract
While metal ions play an important role in the proper functioning of all life, many questions remain unanswered about exactly how different metals contribute to health and disease. The development of fluorescent probes, which respond to metals, has allowed greater understanding of the cellular location, concentration and speciation of metals in living systems, giving a new appreciation of their function. While the focus of studies using these fluorescent tools has largely been on mammalian organisms, there has been relatively little application of these powerful tools to other organisms. In this review, we highlight recent examples of molecular fluorophores, which have been applied to sensing metals in non-mammalian organisms.
Collapse
Affiliation(s)
- Tom Hawtrey
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, NSW 2006, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, NSW 2006, Australia; The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
8
|
Fluorescent and Colorimetric Dual-Mode Strategy Based on Rhodamine 6G Hydrazide for Qualitative and Quantitative Detection of Hg 2+ in Seafoods. Foods 2023; 12:foods12051085. [PMID: 36900600 PMCID: PMC10001036 DOI: 10.3390/foods12051085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
In this study, a rapid fluorescent and colorimetric dual-mode detection strategy for Hg2+ in seafoods was developed based on the cyclic binding of the organic fluorescent dye rhodamine 6G hydrazide (R6GH) to Hg2+. The luminescence properties of the fluorescent R6GH probe in different systems were investigated in detail. Based on the UV and fluorescence spectra, it was determined that the R6GH has good fluorescence intensity in acetonitrile and good selective recognition of Hg2+. Under optimal conditions, the R6GH fluorescent probe showed a good linear response to Hg2+ (R2 = 0.9888) in the range of 0-5 μM with a low detection limit of 2.5 × 10-2 μM (S/N = 3). A paper-based sensing strategy based on fluorescence and colorimetric analysis was developed for the visualization and semiquantitative analysis of Hg2+ in seafoods. The LAB values of the paper-based sensor impregnated with the R6GH probe solution showed good linearity (R2 = 0.9875) with Hg2+ concentration in the range of 0-50 μM, which means that the sensing paper can be combined with smart devices to provide reliable and efficient Hg2+ detection.
Collapse
|
9
|
A near-infrared colorimetric and fluorometric chemodosimeter for Cu2+ based on a bis-spirocyclic rhodamine and its application in imagings. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
A novel peptide-based fluorescent probe for highly selective detection of mercury (II) ions in real water samples and living cells based on aggregation-induced emission effect. Anal Bioanal Chem 2022; 414:4717-4726. [PMID: 35589864 DOI: 10.1007/s00216-022-04094-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 11/01/2022]
Abstract
A new fluorescent probe TPE-GHK was synthesized containing a tetrastyrene (TPE) derivative as fluorophore and classical tripeptide (Gly-His-Lys-NH2) as a receptor based on the aggregation-induced emission (AIE) mechanism. TPE-GHK displayed high selectivity and rapid fluorescent "turn-on" response to Hg2+ among other competitive metal ions. The 2:1 complex binding mechanism of TPE-GHK toward Hg2+ was verified by fluorometric titration, Job's plots, and ESI-HRMS spectra. The fluorescent emission showed a good linear response in the range of 0-1.0 μM with the low detection limit of 28.6 nM. Meanwhile, TPE-GHK exhibited the excellent biocompatibility and low toxicity and was successfully applied in monitoring Hg2+ in living CAKI 2 cells, which demonstrated its potential application in environment and biological science. More importantly, TPE-GHK could be used to detect Hg2+ in two real water samples and also was successfully designed as test strips.
Collapse
|
11
|
Ultrasensitive Detection and High-Contrast Bioimaging of Hg2+ Using Monothiosquaraine-Based Fluorescent Probe via Hydrogen Bond Promoted Desulfurization. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|