1
|
Abou El-Alamin MM, Mohamed DA, Farag AS. One-Pot Synthesis of Sustainable Fluorescent Nanomaterials via Microwave Irradiation as a Probe for the Determination of Metformin in Pure and Pharmaceutical Dosage Forms: Greenness and Whiteness Metrics. LUMINESCENCE 2024; 39:e4923. [PMID: 39384407 DOI: 10.1002/bio.4923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 10/11/2024]
Abstract
A rapid, green and sensitive technique for the determination of metformin determination was developed based on the direct fluorescence enhancement of carbon dots (CDs) induced by the cited drug. The water-soluble CDs were prepared via a one-pot synthesis from avocado peels using domestic microwave. The prepared CDs exhibited strong fluorescence at 405 nm after excitation at 320 nm with a quantum yield of 51%. The fluorescence of CDs was enhanced linearly by increasing the concentration of metformin within the range 0.5-25 μg/mL with limit of detection 0.087 μg/mL and limit of quantification 0.263 μg/mL. The designed probe was proved to be selective toward metformin in the presence of other drugs such as vildagliptin and alogliptin and also in the presence of excipients in the pharmaceutical dosage form. The suggested and reported methods were compared with the help of the whiteness and greenness tools, specifically the white analytical chemistry and analytical greenness metric tools, for assessing hazardous solvents and reagents used.
Collapse
Affiliation(s)
- Maha M Abou El-Alamin
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Dina A Mohamed
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Amir Shaaban Farag
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Baruah A, Newar R, Das S, Kalita N, Nath M, Ghosh P, Chinnam S, Sarma H, Narayan M. Biomedical applications of graphene-based nanomaterials: recent progress, challenges, and prospects in highly sensitive biosensors. DISCOVER NANO 2024; 19:103. [PMID: 38884869 PMCID: PMC11183028 DOI: 10.1186/s11671-024-04032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
Graphene-based nanomaterials (graphene, graphene oxide, reduced graphene oxide, graphene quantum dots, graphene-based nanocomposites, etc.) are emerging as an extremely important class of nanomaterials primarily because of their unique and advantageous physical, chemical, biological, and optoelectronic aspects. These features have resulted in uses across diverse areas of scientific research. Among all other applications, they are found to be particularly useful in designing highly sensitive biosensors. Numerous studies have established their efficacy in sensing pathogens and other biomolecules allowing for the rapid diagnosis of various diseases. Considering the growing importance and popularity of graphene-based materials for biosensing applications, this review aims to provide the readers with a summary of the recent progress in the concerned domain and highlights the challenges associated with the synthesis and application of these multifunctional materials.
Collapse
Affiliation(s)
- Arabinda Baruah
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Rachita Newar
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Saikat Das
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Nitul Kalita
- Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Masood Nath
- University of Technology and Applied Sciences, Muscat, Oman
| | - Priya Ghosh
- Department of Chemistry, Gauhati University, Guwahati, Assam, 781014, India
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Autonomous Institution, Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Hemen Sarma
- Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, University of Texas at El Paso, UTEP, 500 W. University Ave, El Paso, TX, 79968, USA.
| |
Collapse
|
3
|
Fendrych K, Górska-Ratusznik A, Smajdor J. Electrochemical Assays for the Determination of Antidiabetic Drugs-A Review. MICROMACHINES 2023; 15:10. [PMID: 38276837 PMCID: PMC10820374 DOI: 10.3390/mi15010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
This article presents the current state of knowledge regarding electrochemical methods for determining the active substances within drugs that are used in the treatment of type 1 and type 2 diabetes. Electrochemical methods of analysis, due to their sensitivity and easiness, are a great alternative to other, usually more expensive analytical assays. The determination of active substances mentioned in this review is based on oxidation or reduction processes on the surface of the working electrode. A wide variety of working electrodes, often modified with materials such as nanoparticles or conducting polymers, have been used for the highly sensitive analysis of antidiabetic drugs. The presented assays allow us to determine the compounds of interest in various samples, such as pharmaceutical products or different human bodily fluids.
Collapse
Affiliation(s)
- Katarzyna Fendrych
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Cracow, Poland
| | - Anna Górska-Ratusznik
- Lukasiewicz Research Network—Krakow Institute of Technology, 73 Zakopianska St., 30-418 Krakow, Poland
| | - Joanna Smajdor
- Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Mickiewicza 30, 30-059 Cracow, Poland
| |
Collapse
|
4
|
Zamani S, Ghanbari K, Bonyadi S. Electrochemical determination of metformin via a carbon paste electrode modified with an Ag NPs/Cu 2O/CuO-decorated bacterial nanocellulose composite. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4606-4614. [PMID: 37655813 DOI: 10.1039/d3ay00703k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Metformin (MET) is widely used in the treatment of diabetes either alone or in combination with other drugs, in drug discovery to evaluate the anti-diabetic potential of other drugs, and usually as a comparison compound in pharmacokinetics/pharmacodynamics studies. Measuring the concentration of this substance is very important both pre-clinically in different species and clinically in the medical monitoring of diabetic patients to prevent toxicity and ensure adherence to described drugs. Therefore, it is very important to develop a sensitive and selective method to measure MET. In this work, a new electrochemical biosensor based on a carbon paste electrode, modified with bacterial nanocellulose, copper oxide, and silver nanoparticles (Ag NPs/Cu2O/CuO/BNC/CPE) was used for high-sensitivity MET determination. The morphology and structure of this bio-nanocomposite were characterized by ATR-IR, FE-SEM, EDS, mapping, XRD, and DRS techniques. Compared with the CPE electrode, the Ag NPs/Cu2O/CuO/BNC/CPE modified electrode showed much higher electrocatalytic activities toward the oxidation of MET. The measurements were carried out by the cyclic voltammetry technique. Surface conductance was evaluated using the impedance technique. The results showed an increase in surface conductivity. The detection limit was obtained at 42.3 nM and two linear ranges 0.1-76 and 76-1000.0 μM were observed. The developed sensor had good features such as high sensitivity, reproducibility and repeatability, low detection limit, and fast response time. The obtained results from the real sample (MET tablets) were completely satisfactory.
Collapse
Affiliation(s)
- S Zamani
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, P. O. Box 1993893973, Tehran, Iran.
| | - Kh Ghanbari
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, P. O. Box 1993893973, Tehran, Iran.
| | - S Bonyadi
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, P. O. Box 1993893973, Tehran, Iran.
| |
Collapse
|
5
|
Wu L, Lu X, Wu Y, Huang C, Gu C, Tian Y, Ma J. An electrochemical sensor based on synergistic enhancement effects between nitrogen-doped carbon nanotubes and copper ions for ultrasensitive determination of anti-diabetic metformin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163120. [PMID: 36996983 DOI: 10.1016/j.scitotenv.2023.163120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Metformin (MET) is the primary medicine for type II diabetes, which produces carcinogenic byproducts during chlorine disinfection, so the detection of MET in aqueous environment is crucial. In this work, an electrochemical sensor based on nitrogen-doped carbon nanotubes (NCNT) has been constructed for ultrasensitive determination of MET in the presence of Cu(II) ions. The excellent conductivity and rich π-conjugated structure of NCNT facilitate the electron transfer rate of fabricated sensor and benefit the adsorption of cation ions. Cu(II) ions can chelate with MET to form MET-Cu(II) complex, which are easily accumulated on the surface of NCNT through cation-π interaction. Attributing to the synergistic enhancement effects of NCNT and Cu(II) ions, the fabricated sensor exhibits excellent analytical performances with a low detection limit of 9.6 nmol L-1, high sensitivity of 64.97 A mol-1 cm-2 and wide linear range of 0.3-10 μmol L-1. The sensing system has been successfully applied for rapid (20 s) and selective determination of MET in real water samples with satisfactory recoveries (90.2 %-108.8 %). This study provides a robust strategy for MET detection in aqueous environment and holds great promise for rapid risk assessment and early warning of MET.
Collapse
Affiliation(s)
- Lingxia Wu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Yun Wu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Chaonan Huang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Chuantao Gu
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Yong Tian
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, PR China.
| |
Collapse
|
6
|
Electroanalytical application of Ag@POM@rGO nanocomposite and ionic liquid modified carbon paste electrode for the quantification of ciprofloxacin antibiotic. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
7
|
Jawad SEZ, Ibrahim M, Fatima B, Chohan TA, Hussain D, Najam-Ul-Haq M. Fabrication and employment of cobalt-doped yttrium iron garnets for the electrochemical analysis of anti-diabetic, metformin in serum of type 2 diabetes mellitus patients. NANOSCALE RESEARCH LETTERS 2023; 18:21. [PMID: 36811724 DOI: 10.1186/s11671-023-03795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/08/2023] [Indexed: 05/24/2023]
Abstract
Metformin (MET) is an anti-diabetic drug employed as the first-line therapy for patients of type II diabetes mellitus (T2DM). Overdosage of drugs leads to severe outcomes, and its monitoring in biofluids is vital. The present study develops cobalt-doped yttrium iron garnets and employs them as an electroactive material immobilized on a glassy carbon electrode (GCE) for the sensitive and selective detection of metformin via electroanalytical techniques. The fabrication procedure via the sol-gel method is facile and gives a good yield of nanoparticles. They are characterized by FTIR, UV, SEM, EDX, and XRD. Pristine yttrium iron garnet particles are also synthesized for comparison, where the electrochemical behaviors of varying electrodes are analyzed via cyclic voltammetry (CV). The activity of metformin at varying concentrations and pH is investigated via differential pulse voltammetry (DPV), and the sensor generates excellent results for metformin detection. Under optimum conditions and at a working potential of 0.85 V (vs. Ag/AgCl/3.0 M KCl), the linear range and limit of detection (LOD) obtained through the calibration curve are estimated as 0-60 μM and 0.04 μM, respectively. The fabricated sensor is selective for metformin and depicts a blind response toward interfering species. The optimized system is applied to directly measure MET in buffers and serum samples of T2DM patients.
Collapse
Affiliation(s)
- Shan E Zahra Jawad
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Muhammad Ibrahim
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Batool Fatima
- Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Tahir Ali Chohan
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Dilshad Hussain
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Najam-Ul-Haq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| |
Collapse
|
8
|
Hosny NM. Insights into the lipophilicity of four commonly prescribed antidiabetic drugs and their simultaneous analysis using a simple TLC-spectrodensitometric method: Application to fixed-dose combination tablets and human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1206:123341. [PMID: 35834870 DOI: 10.1016/j.jchromb.2022.123341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
The retention and lipophilicity characteristics of four oral antidiabetic drugs namely; Metformin (MET), Linagliptin (LIN), Empagliflozin (EMP), and Dapagliflozin (DAP) were evaluated by a facile TLC-spectrodensitometric method. The developed method was validated and employed for simultaneous determination of the investigated drugs in their synthetic quaternary mixture, single- and multi-component tablets, and human plasma. The separation of the cited drugs was achieved using silica gel G 60F254-TLC plates and a mobile system consisting of n-butanol: water: glacial acetic acid (7: 3: 1, v/v/v). After scanning at 234 nm, good linearities (10.0-2000.0 ng/band for each drug) and correlation coefficients (r = 0.99882-0.99972) with lower limits of detection and quantitation (2.17-3.58 and 6.57-10.85 ng/band, respectively) were statistically calculated. The obtained recoveries (98.35-101.38%) proved the wide applicability of the established method for concurrent estimation of the studied antidiabetics in fixed-dose combination tablets and human plasma. Besides, the present work was extended to estimate the lipophilicity parameters of the targeted drugs. Molecular lipophilicity (RM), relative lipophilicity (RM0), and lipophilic descriptor (C0) were calculated for MET, LIN, EMP, and DAP. Good correlations (r = 0.8729-0.9933) between the chromatographic retention data and molecular descriptors of the studied drugs were attained. The obtained results confirmed the poor lipophilicity of MET and LIN compared to EMP and DAP. Lastly, understanding the lipophilicity of the cited drugs may be promising for the future design of safer and more effective formulations for diabetes mellitus, cancer, and Alzheimer's disease. Over and above, this work may be further applied to QSAR studies.
Collapse
Affiliation(s)
- Noha M Hosny
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| |
Collapse
|
9
|
Suresh R, Rajendran S, Kumar PS, Hoang TKA, Soto-Moscoso M, Jalil AA. Recent developments on graphene and its derivatives based electrochemical sensors for determinations of food contaminants. Food Chem Toxicol 2022; 165:113169. [PMID: 35618108 DOI: 10.1016/j.fct.2022.113169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 10/18/2022]
Abstract
The sensing of food contaminants is essential to prevent their adverse health effects on the consumers. Electrochemical sensors are promising in the determination of electroactive analytes including food pollutants, biomolecules etc. Graphene nanomaterials offer many benefits as electrode material in a sensing device. To further improve the analytical performance, doped graphene or derivatives of graphene such as reduced graphene oxide and their nanocomposites were explored as electrode materials. Herein, the advancements in graphene and its derivatives-based electrochemical sensors for analysis of food pollutants were summarized. Determinations of both organic (food colourants, pesticides, drugs, etc.) and inorganic pollutants (metal cations and anions) were considered. The influencing factors including nature of electrode materials and food pollutants, pH, electroactive surface area etc., on the sensing performances of modified electrodes were highlighted. The results of pollutant detection in food samples by the graphene-based electrode have also been outlined. Lastly, conclusions and current challenges in effective real sample detection were presented.
Collapse
Affiliation(s)
- R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | | | - A A Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, 81310, UTM Johor Bahru, Johor, Malaysia
| |
Collapse
|