1
|
Huo GN, Zhang SS, Li YL, Li JX, Yue Z, Huang WP, Zhang SM, Zhu BL. CdS-Modified TiO 2 Nanotubes with Heterojunction Structure: A Photoelectrochemical Sensor for Glutathione. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:13. [PMID: 36615922 PMCID: PMC9824176 DOI: 10.3390/nano13010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The formation of heterojunction structures can effectively prevent the recombination of photogenerated electron-hole pairs in semiconductors and result in the enhancement of photoelectric properties. Using TiO2 nanotubes (prepared using the hydrothermal-impregnation method) as carriers, CdS-TiO2NTs were fabricated as a photoelectrochemical (PEC) sensor, which can be used under visible light and can exhibit good PEC performance due to the existence of the heterojunction structure. The experimental results show that the prepared CdS-TiO2NTs electrode had a linear response to 2-16 mM glutathione (GSH). The sensor's sensitivity and detection limit (LOD) were 102.9 µA·mM-1 cm-2 and 27.7 µM, respectively. Moreover, the biosensor had good stability, indicating the potential application of this kind of heterojunction PEC biosensor.
Collapse
Affiliation(s)
- Guo-Na Huo
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
- Chemistry and Chemical Engineering College, Xingtai University, Xingtai 054000, China
| | - Sha-Sha Zhang
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Yue-Liu Li
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Xing Li
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Zhao Yue
- Department of Microelectronics, Nankai University, Tianjin 300350, China
| | - Wei-Ping Huang
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Min Zhang
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
| | - Bao-Lin Zhu
- College of Chemistry, The Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300071, China
- National Demonstration Center for Experimental Chemistry Education (Nankai University), Tianjin 300071, China
| |
Collapse
|
2
|
Zhang J, Bai R, Zhou Y, Chen Z, Zhang P, Li J, Yu J. Impact of a polymer modifier on directing the non-classical crystallization pathway of TS-1 zeolite: accelerating nucleation and enriching active sites. Chem Sci 2022; 13:13006-13014. [PMID: 36425513 PMCID: PMC9667963 DOI: 10.1039/d2sc04544c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/29/2022] [Indexed: 03/09/2024] Open
Abstract
The crystallization process directly affects the physicochemical properties and active centers of zeolites; however, controllable tuning of the zeolite crystallization process remains a challenge. Herein, we utilized a polymer (polyacrylamide, PAM) to control the precursor structure evolution of TS-1 zeolite through a two-step crystallization process, so that the crystallization path was switched from a classical to a non-classical mechanism, which greatly accelerated nucleation and enriched active Ti sites. The TS-1 crystallization process was investigated by means of various advanced characterization techniques. It was found that specific interactions between PAM and Si/Ti species promoted the assembly of colloidal precursors containing ordered structural fragments and stabilized Ti species in the precursors, leading to a 1.5-fold shortened crystallization time and enriched Ti content in TS-1 (Si/Ti = 29). The PAM-regulated TS-1 zeolite exhibited enhanced catalytic performance in oxidative reactions compared to conventional samples.
Collapse
Affiliation(s)
- Jiani Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Risheng Bai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Yida Zhou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Ziyi Chen
- Department of Chemistry, Dalhousie University Halifax Nova Scotia B4H4R2 Canada
| | - Peng Zhang
- Department of Chemistry, Dalhousie University Halifax Nova Scotia B4H4R2 Canada
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University Changchun 130012 China
| |
Collapse
|
3
|
Extended π‑conjugated system of 3D carbon-rich carbon nitride microspheres for boosting photoelectrochemical 4-chlorophenol sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|