1
|
Fan X, Zhang X, Zhang Y, Jiang S, Song W, Song D. IR-Driven Multisignal Conditioning for Multiplex Detection: Thermal-Responsive Triple DNA-Mediated Reconfigurable Photoelectrochemical/Photothermal Dual-Mode Strategy. ACS Sens 2025; 10:292-300. [PMID: 39752297 DOI: 10.1021/acssensors.4c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Superior to traditional multiplex photoelectrochemical (PEC) sensors, integrated multitarget assay on a single reconstructive electrode interface is promising in real-time detection through eliminating the need of specialized instrumentation and cumbersome interfacial modifications. Current interface reconstruction approaches including pH modulation and bioenzyme cleavage involve biohazardous and time-consuming operations, which cannot meet the demand for rapid, eco-friendly, and portable detection, which are detrimental to the development of multiplex PEC sensors toward portability. Herein, we report a pioneer work on IR-driven "four-to-one" multisignal conditioning to facile reconfigure electrode interface for multitarget detection via photoelectrochemical/photothermal dual mode. The copper sulfide quantum dot (CuS QD) with excellent photoelectrochemical properties and a photothermal effect is first labeled on DNA S2. Once the CuS QD-S2 complementarily pairs with the DNA S3 on the photocathode surface, thermal-responsive triple DNA is formed, and the photocurrent and photothermal dual-mode signals for one target assay are produced. Upon the dissociation of the triple DNA by IR irradiation, the electrode interface is reconfigured for the self-calibrating dual-mode detection of another target. The feasibility of the IR-driven multisignal conditioning sensor is confirmed by detecting coexistent antibiotics kanamycin (KANA) and neomycin (NEO) in complex real samples. The low-loss interface reconfiguration and rapid "four-to-one" multisignal modulation highlight a broad prospect for self-calibrating multiplex assay in the fields of environment, medicine, and food safety.
Collapse
Affiliation(s)
- Xue Fan
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Xuechen Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Yanru Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Shan Jiang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Wenbo Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Yang L, Qiu G, Sun Y, Sun L, Fan X, Han Q, Li Z. Temperature-Sensitive Sensors Modified with Poly(N-isopropylacrylamide): Enhancing Performance through Tailored Thermoresponsiveness. Molecules 2024; 29:3327. [PMID: 39064905 PMCID: PMC11279292 DOI: 10.3390/molecules29143327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The development of temperature-sensitive sensors upgraded by poly(N-isopropylacrylamide) (PNIPAM) represents a significant stride in enhancing performance and tailoring thermoresponsiveness. In this study, an array of temperature-responsive electrochemical sensors modified with different PNIPAM-based copolymer films were fabricated via a "coating and grafting" two-step film-forming technique on screen-printed platinum electrodes (SPPEs). Chemical composition, grafting density, equilibrium swelling, surface wettability, surface morphology, amperometric response, cyclic voltammograms, and other properties were evaluated for the modified SPPEs, successively. The modified SPPEs exhibited significant changes in their properties depending on the preparation concentrations, but all the resulting sensors showed excellent stability and repeatability. The modified sensors demonstrated favorable sensitivity to hydrogen peroxide and L-ascorbic acid. Furthermore, notable temperature-induced variations in electrical signals were observed as the electrodes were subjected to temperature fluctuations above and below the lower critical solution temperature (LCST). The ability to reversibly respond to temperature variations, coupled with the tunability of PNIPAM's thermoresponsive properties, opens up new possibilities for the design of sensors that can adapt to changing environments and optimize their performance accordingly.
Collapse
Affiliation(s)
- Lei Yang
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (L.Y.); (G.Q.); (L.S.)
| | - Guangwei Qiu
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (L.Y.); (G.Q.); (L.S.)
| | - Yuanyuan Sun
- College of Engineering, Shenyang Agricultural University, Shenyang 110866, China;
| | - Luqiao Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (L.Y.); (G.Q.); (L.S.)
| | - Xiaoguang Fan
- College of Engineering, Shenyang Agricultural University, Shenyang 110866, China;
| | - Qiuju Han
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China; (L.Y.); (G.Q.); (L.S.)
| | - Zheng Li
- School of Environmental and Safety Engineering, Liaoning Petrochemical University, Fushun 113001, China;
| |
Collapse
|
3
|
Wang H, Feng Z, Lin F, Zhao Y, Hu Y, Yang Q, Zou Y, Zhao Y, Yang R. Research on Temperature-Switched Dopamine Electrochemical Sensor Based on Thermosensitive Polymers and MWCNTs. Polymers (Basel) 2023; 15:polym15061465. [PMID: 36987245 PMCID: PMC10058576 DOI: 10.3390/polym15061465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
A temperature-controlled electrochemical sensor was constructed based on a composite membrane composed of temperature-sensitive polymer poly (N-isopropylacrylamide) (PNIPAM) and carboxylated multi-walled carbon nanotubes (MWCNTs-COOH). The sensor has good temperature sensitivity and reversibility in detecting Dopamine (DA). At low temperatures, the polymer is stretched to bury the electrically active sites of carbon nanocomposites. Dopamine cannot exchange electrons through the polymer, representing an “OFF” state. On the contrary, in a high-temperature environment, the polymer shrinks to expose electrically active sites and increases the background current. Dopamine can normally carry out redox reactions and generate response currents, indicating the “ON” state. In addition, the sensor has a wide detection range (from 0.5 μM to 150 μM) and low LOD (193 nM). This switch-type sensor provides new avenues for the application of thermosensitive polymers.
Collapse
Affiliation(s)
- Haixiu Wang
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Zufei Feng
- School of Science, Xi’an University of Technology, Xi’an 710048, China
- Correspondence:
| | - Fupeng Lin
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Yan Zhao
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Yangfan Hu
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Qian Yang
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Yiming Zou
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Yingjuan Zhao
- School of Science, Xi’an University of Technology, Xi’an 710048, China
| | - Rong Yang
- International Research Center for Composite and Intelligent Manufacturing Technology, Institute of Chemical Power Sources, Materials and Engineering College, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
4
|
Singh VK, Kumar K, Das A, Tiwari R, Krishnamoorthi S. Ameliorated microgel for bimetallic Ag/CuO nanoparticles and their expeditious catalytic applications. IRANIAN POLYMER JOURNAL 2023. [DOI: 10.1007/s13726-023-01155-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
5
|
Shahbakhsh M, Saravani H, Dusek M, Poupon M. Study of the one-step in situ growth synthesis of Cu-Pic coordination polymer and Cu-BTC MOF and their performances for detection of 4-Nitrophenol. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Hydrothermal Synthesis of MnO2/Reduced Graphene Oxide Composite for 4-Nitrophenol Sensing Applications. INORGANICS 2022. [DOI: 10.3390/inorganics10120219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recently, the electrochemical sensing approach has attracted materials/electrochemical scientists to design and develop electrode materials for the construction of electrochemical sensors for the detection of para-nitrophenol (4-NP). In the present study, we have prepared a hybrid composite of MnO2 and rGO (MnO2/rGO) using a hydrothermal approach. The morphological features of the prepared MnO2/rGO composite were studied by scanning electron microscopy, whereas the phase purity and formation of the MnO2/rGO composite were authenticated via the powder X-ray diffraction method. Energy-dispersive X-ray spectroscopy was also employed to analyze the elemental composition of the prepared MnO2/rGO composite. In further studies, a glassy carbon electrode (GCE) was modified with MnO2/rGO composite (MnO2/rGO/GCE) and explored as 4-nitrophenol (4-NP) sensor. The fabricated MnO2/rGO/GCE exhibited a reasonably good limit of detection of 0.09 µM with a sensitivity of 0.657 µA/µMcm2. The MnO2/rGO/GCE also demonstrates good selectivity, stability and repeatability in 50 cycles.
Collapse
|
7
|
Saravanan A, Kumar PS, Srinivasan S, Jeevanantham S, Vishnu M, Amith KV, Sruthi R, Saravanan R, Vo DVN. Insights on synthesis and applications of graphene-based materials in wastewater treatment: A review. CHEMOSPHERE 2022; 298:134284. [PMID: 35283157 DOI: 10.1016/j.chemosphere.2022.134284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Graphene has excellent unique thermal, chemical, optical, and mechanical properties such as high thermal conductivity, high chemical stability, optical transmittance, high current density, higher surface area, etc. Due to their outstanding properties, the attention towards graphene-based materials and their derivatives in wastewater treatment has been increased in recent times. Different graphene-based materials such as graphene oxides, graphene quantum dots, graphene nanoplatelets, graphene nanoribbons and other graphene-based nanocomposites are synthesized through chemical vapor deposition, mechanical and electrochemical exfoliation of graphite. In this review, the specifics about the graphenes and their derivatives, the synthesis strategy of graphene-based materials are described. This review critically explained the applications of graphene-based materials in wastewater treatment. Graphene-based materials were utilized as adsorbents, electrodes, and photocatalysts for the efficient removal of toxic pollutants such as heavy metals, dyes, pharmaceutics, antibiotics, phenols, polycyclic aromatic hydrocarbons have been highlighted and discussed. Herein, the potential scope of graphene-based material in the field of wastewater treatment is critically reviewed. In addition, a brief perspective on future research directions and difficulties in the synthesis of graphene-based material are summarized.
Collapse
Affiliation(s)
- A Saravanan
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Srinivasan
- Department of Biomedical Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Jeevanantham
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - M Vishnu
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - K Vishal Amith
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - R Sruthi
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, Tamilnadu, 602105, India
| | - R Saravanan
- Department of Mechanical Engineering, Universidad de Tarapacá, Arica, Chile
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|