1
|
Schram J, Parrilla M, Sleegers N, Slosse A, Van Durme F, van Nuijs ALN, De Wael K. Electrochemical classification of benzodiazepines: A comprehensive approach combining insights from voltammetry and liquid chromatography - mass spectrometry. Talanta 2024; 279:126623. [PMID: 39084042 DOI: 10.1016/j.talanta.2024.126623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
The growing non-medical use of benzodiazepines (BZs) has led to the emergence of counterfeit BZ pills and new psycho-active substances (NPS) in the BZ class on the illicit market. Comprehensive analytical methods for BZ identification are required to allow law enforcement, first aid responders and drug-checking services to analyze a variety of sample types and contents to make timely decisions on the spot. In this work, the electrochemical behavior of diazepam (DZ), clonazepam (CZ) and alprazolam (AP) is studied on graphite screen-printed electrodes, both with and without dissolved oxygen in the solution, to link their redox signals to their chemical structure. After elucidation of their reduction mechanisms using liquid chromatography coupled to high-resolution mass spectrometry, three structural classes (Class 1, Class 2 and Class 3) were defined, each with different redox centers and electrochemical behavior. Subsequently, 22 confiscated pills containing 14 different BZs were correctly assigned to these three structural classes, with the deoxygenated conditions displaying the highest class selectivity. Finally, the three classes were successfully detected after being spiked into five alcoholic beverages in the context of drug-facilitated sexual assault. For analysis in red wine, which complicated the analysis by interfering with Class 1, a dual test strategy in pH 2 and pH 7 was proposed for accurate detection. Its rapid measurements, broad scope and lack of interference from diluents or colors makes this method a promising approach for aiding various services in combating problematic BZ use.
Collapse
Affiliation(s)
- Jonas Schram
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Marc Parrilla
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Nick Sleegers
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Amorn Slosse
- Drugs and Toxicology Department, National Institute for Criminalistics and Criminology (NICC), Vilvoordsesteenweg 100, 1120, Brussels, Belgium
| | - Filip Van Durme
- Drugs and Toxicology Department, National Institute for Criminalistics and Criminology (NICC), Vilvoordsesteenweg 100, 1120, Brussels, Belgium
| | | | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| |
Collapse
|
2
|
Van Echelpoel R, Joosten F, Parrilla M, De Wael K. Progress on the Electrochemical Sensing of Illicit Drugs. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:413-442. [PMID: 38273206 DOI: 10.1007/10_2023_239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Illicit drugs are harmful substances, threatening both health and safety of societies in all corners of the world. Several policies have been developed over time to deal with this illicit drug problem, including supply reduction and harm reduction policies. Both policies require on-site detection tools to succeed, i.e. sensors that can identify illicit drugs in samples at the point-of-care. Electrochemical sensors are highly suited for this task, due to their short analysis times, low cost, high accuracy, portability and orthogonality with current technologies. In this chapter, we evaluate the latest trend in electrochemical sensing of illicit drugs, with a focus on detection of illicit drugs in seizures and body fluids. Furthermore, we will also provide an outlook on the potential of electrochemistry in wearable sensors for this purpose.
Collapse
|
3
|
Rosendo LM, Antunes M, Simão AY, Brinca AT, Catarro G, Pelixo R, Martinho J, Pires B, Soares S, Cascalheira JF, Passarinha L, Rosado T, Barroso M, Gallardo E. Sensors in the Detection of Abused Substances in Forensic Contexts: A Comprehensive Review. MICROMACHINES 2023; 14:2249. [PMID: 38138418 PMCID: PMC10745465 DOI: 10.3390/mi14122249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023]
Abstract
Forensic toxicology plays a pivotal role in elucidating the presence of drugs of abuse in both biological and solid samples, thereby aiding criminal investigations and public health initiatives. This review article explores the significance of sensor technologies in this field, focusing on diverse applications and their impact on the determination of drug abuse markers. This manuscript intends to review the transformative role of portable sensor technologies in detecting drugs of abuse in various samples. They offer precise, efficient, and real-time detection capabilities in both biological samples and solid substances. These sensors have become indispensable tools, with particular applications in various scenarios, including traffic stops, crime scenes, and workplace drug testing. The integration of portable sensor technologies in forensic toxicology is a remarkable advancement in the field. It has not only improved the speed and accuracy of drug abuse detection but has also extended the reach of forensic toxicology, making it more accessible and versatile. These advancements continue to shape forensic toxicology, ensuring swift, precise, and reliable results in criminal investigations and public health endeavours.
Collapse
Affiliation(s)
- Luana M. Rosendo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Mónica Antunes
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Ana Y. Simão
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Ana Teresa Brinca
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Gonçalo Catarro
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Rodrigo Pelixo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - João Martinho
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Bruno Pires
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - Sofia Soares
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
| | - José Francisco Cascalheira
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Departamento de Química, Universidade da Beira Interior, 6200-001 Covilhã, Portugal
| | - Luís Passarinha
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, 2829-516 Caparica, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)—Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| | - Mário Barroso
- Serviço de Química e Toxicologia Forenses, Instituto de Medicina Legal e Ciências Forenses—Delegação do Sul, 1169-201 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (L.M.R.); (M.A.); (A.Y.S.); (A.T.B.); (G.C.); (R.P.); (J.M.); (B.P.); (S.S.); (J.F.C.); (L.P.); (T.R.)
- Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, EM506, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)—Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| |
Collapse
|
4
|
Parrilla M, Detamornrat U, Domínguez-Robles J, Tunca S, Donnelly RF, De Wael K. Wearable Microneedle-Based Array Patches for Continuous Electrochemical Monitoring and Drug Delivery: Toward a Closed-Loop System for Methotrexate Treatment. ACS Sens 2023; 8:4161-4170. [PMID: 37856156 DOI: 10.1021/acssensors.3c01381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Wearable devices based on microneedle (MN) technology have recently emerged as tools for in situ transdermal sensing or delivery in interstitial fluid (ISF). Particularly, MN-based electrochemical sensors allow the continuous monitoring of analytes in a minimally invasive manner through ISF. Exogenous small molecules found in ISF such as therapeutic drugs are ideal candidates for MN sensors due to their correlation with blood levels and their relevance for the optimal management of personalized therapies. Herein, a hollow MN array patch is modified with conductive pastes and functionalized with cross-linked chitosan to develop an MN-based voltammetric sensor for continuous monitoring of methotrexate (MTX). Interestingly, the chitosan coating avoids biofouling while enabling the adsorption of MTX at the electrode's surface for sensitive analysis. The MN sensor exhibits excellent analytical performance in vitro with protein-enriched artificial ISF and ex vivo under a Franz diffusion cell configuration. The MN sensor shows a linear range from 25 to 400 μM, which fits within the therapeutic range of high-dose MTX treatment for cancer patients and an excellent continuous operation for more than two days. Moreover, an iontophoretic hollow MN array patch is developed with the integration of both the anode and cathode in the single MN array patch. The ex vivo characterization demonstrates the transdermal on-demand drug delivery of MTX. Overall, the combination of both MN patches represents impactful progress in closed-loop systems for therapeutic drug management in disorders such as cancer, rheumatoid arthritis, or psoriasis.
Collapse
Affiliation(s)
- Marc Parrilla
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Usanee Detamornrat
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Juan Domínguez-Robles
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
- Department of Pharmacy and Pharmaceutical Technology, University of Seville, 97 Lisburn Road, Seville 41004, Spain
| | - Sensu Tunca
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Ryan F Donnelly
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, U.K
| | - Karolien De Wael
- A-Sense Lab, Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
5
|
Stelmaszczyk P, Kwaczyński K, Rudnicki K, Skrzypek S, Wietecha-Posłuszny R, Poltorak L. Nitrazepam and 7-aminonitrazepam studied at the macroscopic and microscopic electrified liquid-liquid interface. Mikrochim Acta 2023; 190:182. [PMID: 37052720 PMCID: PMC10101902 DOI: 10.1007/s00604-023-05739-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Two benzodiazepine type drugs, that is, nitrazepam and 7-aminonitrazepam, were studied at the electrified liquid-liquid interface (eLLI). Both drugs are illicit and act sedative in the human body and moreover are used as date rape drugs. Existence of the diazepine ring in the concerned chemicals structure and one additional amine group (for 7-aminonitrazepam) allows for the molecular charging below their pKa values, and hence, both drugs can cross the eLLI interface upon application of the appropriate value of the Galvani potential difference. Chosen molecules were studied at the macroscopic eLLI formed in the four electrode cell and microscopic eLLI formed within a microtip defined as the single pore having 25 μm in diameter. Microscopic eLLI was formed using only a few μL of the organic and the aqueous phase with the help of a 3D printed cell. Parameters such as limit of detection and voltammetric detection sensitivity are derived from the experimental data. Developed methodology was used to detect nitrazepam in pharmaceutical formulation and both drugs (nitrazepam and 7-aminonitrazepam) in spiked biological fluids (urine and blood).
Collapse
Affiliation(s)
- Paweł Stelmaszczyk
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Karolina Kwaczyński
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Konrad Rudnicki
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Sławomira Skrzypek
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland
| | - Renata Wietecha-Posłuszny
- Laboratory for Forensic Chemistry, Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.
| | - Lukasz Poltorak
- Electrochemistry@Soft Interfaces Team, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Lodz, Tamka 12, 91-403, Lodz, Poland.
| |
Collapse
|
6
|
Dragan AM, Parrilla M, Sleegers N, Slosse A, Van Durme F, van Nuijs A, Oprean R, Cristea C, De Wael K. Investigating the electrochemical profile of methamphetamine to enable fast on-site detection in forensic analysis. Talanta 2023; 255:124208. [PMID: 36628903 DOI: 10.1016/j.talanta.2022.124208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
Methamphetamine (MA) is a synthetic psychoactive drug which is consumed both licitly and illicitly. In some countries it is prescribed for attention-deficit and hyperactivity disorder, and short-term treatment of obesity. More often though, it is abused for its psychostimulant properties. Unfortunately, the spread and abuse of this synthetic drug have increased globally, being reported as the most widely consumed synthetic psychoactive drug in the world in 2019. Attempting to overcome the shortcomings of the currently used on-site methods for MA detection in suspected cargos, the present study explores the potential of electrochemical identification of MA by means of square wave voltammetry on disposable graphite screen-printed electrodes. Hence, the analytical characterization of the method was evaluated under optimal conditions exhibiting a linear range between 50 μM and 2.5 mM MA, a LOD of 16.7 μM, a LOQ of 50.0 μM and a sensitivity of 5.3 μA mM-1. Interestingly, two zones in the potential window were identified for the detection of MA, depending on its concentration in solution. Furthermore, the oxidative pathway of MA was elucidated employing liquid chromatography - mass spectrometry to understand the change in the electrochemical profile. Thereafter, the selectivity of the method towards MA in mixtures with other drugs of abuse as well as common adulterants/cutting agents was evaluated. Finally, the described method was employed for the analysis of MA in confiscated samples and compared with forensic methods, displaying its potential as a fast and easy-to-use method for on-site analysis.
Collapse
Affiliation(s)
- Ana-Maria Dragan
- Department of Analytical Chemistry, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj-Napoca, Pasteur 6, 400349, Cluj-Napoca, Romania; A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium
| | - Marc Parrilla
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium
| | - Nick Sleegers
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium
| | - Amorn Slosse
- Drugs and Toxicology Department, National Institute for Criminalistics and Criminology (NICC), Vilvoordsesteenweg 100, 1120, Brussels, Belgium
| | - Filip Van Durme
- Drugs and Toxicology Department, National Institute for Criminalistics and Criminology (NICC), Vilvoordsesteenweg 100, 1120, Brussels, Belgium
| | - Alexander van Nuijs
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Radu Oprean
- Department of Analytical Chemistry, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj-Napoca, Pasteur 6, 400349, Cluj-Napoca, Romania
| | - Cecilia Cristea
- Department of Analytical Chemistry, Faculty of Pharmacy, 'Iuliu Hațieganu' University of Medicine and Pharmacy Cluj-Napoca, Pasteur 6, 400349, Cluj-Napoca, Romania
| | - Karolien De Wael
- A-Sense Lab, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, 2010, Antwerp, Belgium.
| |
Collapse
|
7
|
Dai Z. Recent Advances in the Development of Portable Electrochemical Sensors for Controlled Substances. SENSORS (BASEL, SWITZERLAND) 2023; 23:3140. [PMID: 36991851 PMCID: PMC10058808 DOI: 10.3390/s23063140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
This review article summarizes recent achievements in developing portable electrochemical sensing systems for the detection and/or quantification of controlled substances with potential on-site applications at the crime scene or other venues and in wastewater-based epidemiology. Electrochemical sensors employing carbon screen-printed electrodes (SPEs), including a wearable glove-based one, and aptamer-based devices, including a miniaturized aptamer-based graphene field effect transistor platform, are some exciting examples. Quite straightforward electrochemical sensing systems and methods for controlled substances have been developed using commercially available carbon SPEs and commercially available miniaturized potentiostats. They offer simplicity, ready availability, and affordability. With further development, they might become ready for deployment in forensic field investigation, especially when fast and informed decisions are to be made. Slightly modified carbon SPEs or SPE-like devices might be able to offer higher specificity and sensitivity while they can still be used on commercially available miniaturized potentiostats or lab-fabricated portable or even wearable devices. Affinity-based portable devices employing aptamers, antibodies, and molecularly imprinted polymers have been developed for more specific and sensitive detection and quantification. With further development of both hardware and software, the future of electrochemical sensors for controlled substances is bright.
Collapse
Affiliation(s)
- Zhaohua Dai
- Forensic Science Program, Department of Chemistry and Physical Sciences, Pace University, New York, NY 10038, USA
| |
Collapse
|
8
|
Integration of smart nanomaterials for highly selective disposable sensors and their forensic applications in amphetamine determination. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Chen Y, Sun Y, Niu Y, Wang B, Zhang Z, Zeng L, Li L, sun W. Portable Electrochemical Sensing of Indole‐3‐acetic Acid Based on Self‐assembled MXene and Multi‐walled Carbon Nanotubes Composite Modified Screen‐printed Electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202200279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | | | | | - Lin Li
- Hainan Normal University CHINA
| | | |
Collapse
|