1
|
Rajarathinam T, Jayaraman S, Kim CS, Yoon JH, Chang SC. Two-dimensional nanozyme nanoarchitectonics customized electrochemical bio diagnostics and lab-on-chip devices for biomarker detection. Adv Colloid Interface Sci 2025; 341:103474. [PMID: 40121951 DOI: 10.1016/j.cis.2025.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Recent developments in nanomaterials and nanotechnology have advanced biosensing research. Two-dimensional (2D) nanomaterials or nanozymes, such as metal oxides, graphene and its derivatives, transition metal dichalcogenides, metal-organic frameworks, carbon-organic frameworks and MXenes, have garnered substantial attention in recent years owing to their unique properties, including high surface area, excellent electrical conductivity, and mechanical flexibility. Moreover, 2D nanozymes exhibit intrinsic enzyme-mimicking properties, including those of peroxidase, oxidase, catalase, and superoxide dismutase, making them well-suited for detecting biomarkers of interest and developing bio diagnostics at the point-of-care. Since 2D nanosystems offer ultra-high sensitivity, label-free detection, and real-time analysis, point-of-care testing and multiplexed biomarker detection, the demand is growing. Additionally, their biocompatibility and scalable fabrication make them cost-effective for widespread adoption. This review discusses the advantages of 2D nanozymes and their recent advancements in biosensing applications. This review summarizes the latest developments in 2D nanozymes, focusing on their synthesis, biocatalytic capabilities, and advancements in developing bio diagnostics and lab-on-chip devices for detecting cancer and non-cancer biomarkers. In addition, existing challenges and prospects in 2D nanozyme-based biosensors are identified, highlighting their biosensing potential and advocating for their expanded application in bio diagnostics and lab-on-chip devices.
Collapse
Affiliation(s)
- Thenmozhi Rajarathinam
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Sivaguru Jayaraman
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea; Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| | - Jang-Hee Yoon
- Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
2
|
Zhang Y, Sun Y, Han J, Zhang M, Li F, Yang D. High-sensitivity flexible electrochemical sensor for real-time multi-analyte sweat analysis. Talanta 2025; 287:127644. [PMID: 39879800 DOI: 10.1016/j.talanta.2025.127644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Flexible sweat sensors play a crucial role in health monitoring and disease prevention by enabling real-time, non-invasive assessment of human physiological conditions. Sweat contains a variety of biomarkers, offering valuable insights into an individual's health status. In this study, we developed an advanced flexible electrochemical sensor featuring reduced graphene oxide (rGO)-based electrodes, modified with a composite material comprising nitrogen and sulfur co-doped holey graphene (HG) and MXene, with in-situ-grown TiO2 nanoparticles on the MXene. The sensor design leverages the synergistic properties of its components: MXene provides a conductive scaffold, TiO2 enhances electrocatalytic activity, and the porous HG network facilitates efficient ion and electron transfer, with doping increasing the number of active sites. This configuration enables sensitive and simultaneous detection of ascorbic acid (AA), uric acid (UA), and dopamine (DA). Additionally, a potassium-selective (K⁺) film applied to rGO-enhanced electrodes supports concurrent detection of K⁺ in sweat. The sensor array demonstrates a broad detection range, low detection limits, and high sensitivity, while maintaining mechanical flexibility, anti-interference capabilities, and repeatability. Validated through in-situ sweat biomarker detection during exercise, the sensor effectively tracked fluctuations in K⁺, AA, and UA levels in a volunteer. This practical application underscores the sensor's potential for continuous health monitoring, and early disease detection, establishing it as a promising tool in modern healthcare.
Collapse
Affiliation(s)
- Yan Zhang
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China.
| | - Yining Sun
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Jingxuan Han
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Ming Zhang
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Fangjie Li
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China
| | - Dongye Yang
- School of Material Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, PR China.
| |
Collapse
|
3
|
Zhao Z, Cao J, Zhu B, Li X, Zhou L, Su B. Recent Advances in MXene-Based Electrochemical Sensors. BIOSENSORS 2025; 15:107. [PMID: 39997009 PMCID: PMC11852424 DOI: 10.3390/bios15020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
MXene is a new family of two-dimensional nanomaterials with outstanding electrical conductivity, tunable structure, biocompatibility, and a large surface area. Thanks to these unique physicochemical properties, MXene has been used for constructing electrochemical sensors (MECSens) with excellent performance. In particular, the abundant surface termination of MXene can contribute to greatly enhancing the analytical sensitivity and selectivity of MECSens. Recently, MECSens have been widely applied in many fields including clinical diagnosis, infectious disease surveillance, and food security. However, not all MXene materials are suitable for building electrochemical sensors. In this article, we present an overview of different MECSens that have been developed so far. We begin with a short summary of the preparation and characterization of MECSens. Subsequently, the electrochemical performance, detection strategies, and application scenarios of MECSens are classified and briefly discussed. The article ends with a short conclusion and future perspectives. We hope this article will be helpful for designing and constructing MECSens with outstanding activity for electrochemical analysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058, China; (Z.Z.); (J.C.); (B.Z.); (X.L.); (L.Z.)
| |
Collapse
|
4
|
Parvin N, Kumar V, Joo SW, Mandal TK. Emerging Trends in Nanomedicine: Carbon-Based Nanomaterials for Healthcare. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1085. [PMID: 38998691 PMCID: PMC11243447 DOI: 10.3390/nano14131085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Carbon-based nanomaterials, such as carbon quantum dots (CQDs) and carbon 2D nanosheets (graphene, graphene oxide, and graphdiyne), have shown remarkable potential in various biological applications. CQDs offer tunable photoluminescence and excellent biocompatibility, making them suitable for bioimaging, drug delivery, biosensing, and photodynamic therapy. Additionally, CQDs' unique properties enable bioimaging-guided therapy and targeted imaging of biomolecules. On the other hand, carbon 2D nanosheets exhibit exceptional physicochemical attributes, with graphene excelling in biosensing and bioimaging, also in drug delivery and antimicrobial applications, and graphdiyne in tissue engineering. Their properties, such as tunable porosity and high surface area, contribute to controlled drug release and enhanced tissue regeneration. However, challenges, including long-term biocompatibility and large-scale synthesis, necessitate further research. Potential future directions encompass theranostics, immunomodulation, neural interfaces, bioelectronic medicine, and expanding bioimaging capabilities. In summary, both CQDs and carbon 2D nanosheets hold promise to revolutionize biomedical sciences, offering innovative solutions and improved therapies in diverse biological contexts. Addressing current challenges will unlock their full potential and can shape the future of medicine and biotechnology.
Collapse
Affiliation(s)
| | | | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| |
Collapse
|
5
|
Zarepour A, Karasu Ç, Mir Y, Nematollahi MH, Iravani S, Zarrabi A. Graphene- and MXene-based materials for neuroscience: diagnostic and therapeutic applications. Biomater Sci 2023; 11:6687-6710. [PMID: 37646462 DOI: 10.1039/d3bm01114c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
MXenes and graphene are two-dimensional materials that have gained increasing attention in neuroscience, particularly in sensing, theranostics, and biomedical engineering. Various composites of graphene and MXenes with fascinating thermal, optical, magnetic, mechanical, and electrical properties have been introduced to develop advanced nanosystems for diagnostic and therapeutic applications, as exemplified in the case of biosensors for neurotransmitter detection. These biosensors display high sensitivity, selectivity, and stability, making them promising tools for neuroscience research. MXenes have been employed to create high-resolution neural interfaces for neuroelectronic devices, develop neuro-receptor-mediated synapse devices, and stimulate the electrophysiological maturation of neural circuits. On the other hand, graphene/derivatives exhibit therapeutic applicability in neuroscience, as exemplified in the case of graphene oxide for targeted delivery of therapeutic agents to the brain. While MXenes and graphene have potential benefits in neuroscience, there are also challenges/limitations associated with their use, such as toxicity, environmental impacts, and limited understanding of their properties. In addition, large-scale production and commercialization as well as optimization of reaction/synthesis conditions and clinical translation studies are very important aspects. Thus, it is important to consider the use of these materials in neuroscience research and conduct further research to obtain an in-depth understanding of their properties and potential applications. By addressing issues related to biocompatibility, long-term stability, targeted delivery, electrical interfaces, scalability, and cost-effectiveness, MXenes and graphene have the potential to greatly advance the field of neuroscience and pave the way for innovative diagnostic and therapeutic approaches for neurological disorders. Herein, recent advances in therapeutic and diagnostic applications of graphene- and MXene-based materials in neuroscience are discussed, focusing on important challenges and future prospects.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06500 Ankara, Turkey
| | - Yousof Mir
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| |
Collapse
|
6
|
Yang M, Wang L, Lu H, Dong Q. Advances in MXene-Based Electrochemical (Bio)Sensors for Neurotransmitter Detection. MICROMACHINES 2023; 14:mi14051088. [PMID: 37241710 DOI: 10.3390/mi14051088] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/14/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Neurotransmitters are chemical messengers that play an important role in the nervous system's control of the body's physiological state and behaviour. Abnormal levels of neurotransmitters are closely associated with some mental disorders. Therefore, accurate analysis of neurotransmitters is of great clinical importance. Electrochemical sensors have shown bright application prospects in the detection of neurotransmitters. In recent years, MXene has been increasingly used to prepare electrode materials for fabricating electrochemical neurotransmitter sensors due to its excellent physicochemical properties. This paper systematically introduces the advances in MXene-based electrochemical (bio)sensors for the detection of neurotransmitters (including dopamine, serotonin, epinephrine, norepinephrine, tyrosine, NO, and H2S), with a focus on their strategies for improving the electrochemical properties of MXene-based electrode materials, and provides the current challenges and future prospects for MXene-based electrochemical neurotransmitter sensors.
Collapse
Affiliation(s)
- Meiqing Yang
- Zoology Key Laboratory of Hunan Higher Education, College of Life and Environmental Science, Hunan University of Arts and Science, Changde 415000, China
| | - Lu Wang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haozi Lu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qizhi Dong
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Song L, Nan J, Liu B, Wu F. Novel three-dimensional Ti 3C 2-MXene embedded zirconium alginate aerogel adsorbent for efficient phosphate removal in water. CHEMOSPHERE 2023; 319:138016. [PMID: 36731670 DOI: 10.1016/j.chemosphere.2023.138016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Excessive phosphorus in water causes environmental security problems like eutrophication. Advanced two-dimensional material MXene has attracted raising attention in aquatic adsorption, while lack of selectivity and difficult recovery limit its application in phosphate removal. In this study, Ti3C2-MXene embedded zirconium-crosslinked SA (MX-ZrSA) beads were synthesized and their phosphate adsorption performance under different conditions was assessed. Investigations using SEM/EDS, XRD, BET, TGA and contact angle meter reveal that the addition of Ti3C2-MXene enhanced the thermal stability, mechanical strength, hydrophilicity, and formed loose network-like mesoporous inner structure with large surface area. The theoretical maximum adsorption capacity was 492.55 mg P/g and was well fitted by Freundlich and optimized Langmuir models. The Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis showed that chemisorption was involved, and the formation of Zr-O-P and Ti-O-P complexes accounted for high selectivity and affinity to phosphate. The adsorption experiments in real waters and lab-scale continuous flow Anaerobic-Anoxic-Oxic reactor further indicated the application potential of MX-ZrSA beads. Our study will provide insight into MXene and SA aerogel synergistic adsorption of aquatic contaminants and help with the removal and recovery of finite phosphorus resource.
Collapse
Affiliation(s)
- Langrun Song
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Bohan Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Fangmin Wu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| |
Collapse
|
8
|
Al Kiey SA, Khalil AM, Kamel S. Insight into TEMPO-oxidized cellulose-based composites as electrochemical sensors for dopamine assessment. Int J Biol Macromol 2023; 239:124302. [PMID: 37011750 DOI: 10.1016/j.ijbiomac.2023.124302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/10/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
The diagnosis and treatment of many neurological and psychiatric problems depend on establishing simple, inexpensive, and comfortable electrochemical sensors for dopamine (DA) detection. Herein, 2,2,6,6 tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOC) were successfully loaded with silver nanoparticles (AgNPs) and/or graphite (Gr) and crosslinked by tannic acid, producing composites. This study describes a suitable casting procedure for the composite synthesis of TOC/AgNPs and/or Gr for the electrochemical detection of dopamine. Electrochemical impedance spectra (EIS), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were employed to characterize the TOC/AgNPs/Gr composites. In addition, the direct electrochemistry of electrodes treated with the prepared composites was examined using cyclic voltammetry. The TOC/AgNPs/Gr composite-modified electrode improved electrochemical performance towards detecting dopamine compared to TOC/Gr-modified electrodes. Upon employing amperometric measurement, our electrochemical instrument has a wide linear range (0.005-250 μM), a low limit of detection (0.0005 μM) at S/N = 3, and a high sensitivity (0.963 μA μM-1 cm-2). Additionally, it was demonstrated that DA detection seemed to have outstanding anti-interference characteristics. The proposed electrochemical sensors meet the clinical criteria regarding reproducibility, selectivity, stability, and recovery. The straightforward electrochemical method utilized in this paper may provide a potential framework for creating dopamine quantification biosensors.
Collapse
|
9
|
Ankitha M, Shabana N, Mohan Arjun A, Muhsin P, Abdul Rasheed P. Ultrasensitive electrochemical detection of dopamine from human serum samples by Nb2CTx-MoS2 hetero structures. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
10
|
Amara U, Hussain I, Ahmad M, Mahmood K, Zhang K. 2D MXene-Based Biosensing: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205249. [PMID: 36412074 DOI: 10.1002/smll.202205249] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Indexed: 06/16/2023]
Abstract
MXene emerged as decent 2D material and has been exploited for numerous applications in the last decade. The remunerations of the ideal metallic conductivity, optical absorbance, mechanical stability, higher heterogeneous electron transfer rate, and good redox capability have made MXene a potential candidate for biosensing applications. The hydrophilic nature, biocompatibility, antifouling, and anti-toxicity properties have opened avenues for MXene to perform in vitro and in vivo analysis. In this review, the concept, operating principle, detailed mechanism, and characteristic properties are comprehensively assessed and compiled along with breakthroughs in MXene fabrication and conjugation strategies for the development of unique electrochemical and optical biosensors. Further, the current challenges are summarized and suggested future aspects. This review article is believed to shed some light on the development of MXene for biosensing and will open new opportunities for the future advanced translational application of MXene bioassays.
Collapse
Affiliation(s)
- Umay Amara
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Muhmmad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
11
|
Wu D, Zeng L, Liu Y, Yuan C, Xue X, Zhang X. Design of 2D/2D heterojunction of Ti3C2/BiOClxBr1-x for enhancing photocatalytic performance. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Chen Y, Sun Y, Niu Y, Wang B, Zhang Z, Zeng L, Li L, sun W. Portable Electrochemical Sensing of Indole‐3‐acetic Acid Based on Self‐assembled MXene and Multi‐walled Carbon Nanotubes Composite Modified Screen‐printed Electrode. ELECTROANAL 2022. [DOI: 10.1002/elan.202200279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | | | | | - Lin Li
- Hainan Normal University CHINA
| | | |
Collapse
|