1
|
Wang F, Liu J, Ren Q, Wang J, Wang Y, Li J, Dong C. A Review on the Recent Progress of Metal-Organic Frameworks Based Surface Enhanced Raman Scattering Sensors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:22123-22137. [PMID: 40193580 DOI: 10.1021/acsami.4c20312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Surface enhanced Raman scattering (SERS) has evolved into a significant fingerprint spectroscopic technique for rapidly and nonintrusively tracing target analytes through effective SERS substrates. Metal-organic frameworks (MOFs), as a boom crystalline porous material, serve as promising SERS substrates by accommodating noble metal nanoparticles (NPs) to produce MOFs-based SERS-active materials. Recently, MOFs-based SERS materials (MNPs/MOFs) have gained significant attention due to their enhanced sensing performance. The unique porous nature of MOFs provides an efficient capture capability for analytes, while their shells prevent NPs from oxidization and corrosion, thereby enhancing the consistency of SERS substrates. So far, numerous MNPs/MOFs sensors have been documented. This review outlines the research progress of MNPs/MOFs composites, focusing on the classification, synthesis strategies, and applications in environment analysis, real-time monitoring, food safety, etc.
Collapse
Affiliation(s)
- Fengqin Wang
- College of Chemistry, Tiangong University, Tianjin 300387, P.R. China
| | - Jiayi Liu
- College of Chemistry Engineering and Technology, Tiangong University, Tianjin 300387, P.R. China
| | - Qian Ren
- College of Chemistry, Tiangong University, Tianjin 300387, P.R. China
| | - Jing Wang
- College of Chemistry, Tiangong University, Tianjin 300387, P.R. China
| | - Yihui Wang
- College of Chemistry Engineering and Technology, Tiangong University, Tianjin 300387, P.R. China
| | - Jialin Li
- College of Chemistry, Tiangong University, Tianjin 300387, P.R. China
| | - Caifu Dong
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P.R. China
| |
Collapse
|
2
|
Jiang X, Fu J, Ren S, Xue W. Facile synthesis of novel Ni-BDC-NH 2/Au NPs SERS substrates with synergistic enhancement effects for high-performance detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:2427-2436. [PMID: 40034055 DOI: 10.1039/d4ay02086c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Substrate materials with high sensitivity and good reproducibility are highly desirable for the practical applications of surface-enhanced Raman scattering (SERS) techniques. In this study, a novel gold nanoparticle-loaded Ni-based metal-organic framework (Ni-BDC-NH2/Au NPs) SERS substrate was successfully synthesized via an electrostatic self-assembly method. The enhancement of the SERS signal is achieved owing to the synergy between the chemical enhancement (CM) effect of Ni-BDC-NH2 and the electromagnetic enhancement (EM) of Au NPs, and the enriching of the analyte near the SERS "hot spots" through the strong adsorption capacity of Ni-BDC-NH2. The Ni-BDC-NH2/Au NPs exhibited a high enhancement factor (EF) of 1.10 × 107 and a low detection limit of 5 × 10-9 mol L-1. Besides, the substrate material showed exceptional stability for up to 45 days at room temperature. The Ni-BDC-NH2/Au NPs was used to detect methylene blue (MB), displaying a wide linear range (5 × 10-7 to 5 × 10-5 mol L-1) and high recoveries (86.82-104.46%). These results indicate that the Ni-BDC-NH2/Au NPs hybrid substrate has great potential for the detection of environmental pollution in practical applications.
Collapse
Affiliation(s)
- Xinxing Jiang
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Jihong Fu
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Shuxian Ren
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - WenXia Xue
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| |
Collapse
|
3
|
Zhang S, Pei J, Zhao Y, Yu X, Yang L. Gold nanoparticles decorated crystalline carbon nitride nano-walls as a SERS chip for rapid and sensitive detection of benzidine. Talanta 2025; 283:127057. [PMID: 39447400 DOI: 10.1016/j.talanta.2024.127057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024]
Abstract
Risk level of benzidine residue to the environment and food safety urges surface enhanced Raman scattering (SERS) substrates to develop with high sensitivity and rapid enrichment. Herein, a hybrid of Au NPs decorated crystalline carbon nitride nano-walls (Au/CCN NWs) is fabricated on Al sheet and employed as a SERS substrate for the first time. An electro-enhanced adsorption strategy is employed to endow as-prepared Au/CCN NWs/Al chip with rapid assay capability. Crystalline phase transition and nano-wall morphology respectively bestows high charge transfer efficiency and favorable enrichment activity upon Au/CCN NWs/Al chip, and the hybrid substrate owns a considerable enhancement factor of 1.76 × 106 under static adsorption mode. Moreover, Au/CCN NWs/Al substrate can achieve the saturation enrichment of benzidine in 120 s with the help of electro-enhanced adsorption, and gains a significantly enhanced signal response compared to static adsorption. Likewise, the highly sensitive response (1 μg L-1), superior reproducibility (RSD = 9.11 %, n = 100) and reliable accuracy (recovery rate of 95.55 %-109.46 %) jointly demonstrate that Au/CCN NWs/Al substrate may be applicable for detecting benzidine residue in actual application. This work offers an integrated solution to both enhance charge transfer efficiency and enrichment activity based on collaborative crystalline phase transition and electro-enhanced adsorption, and may inspire the design of novel noble metal/semiconductor hybrid SERS substrates.
Collapse
Affiliation(s)
- Shuting Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jingxuan Pei
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yanfang Zhao
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China; Qilu University of Technology (Shandong Academy of Sciences), Shandong Analysis and Test Center, Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Jinan, 250014, China
| | - Xiang Yu
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Lei Yang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
4
|
Cheng H, Chen R, Zhan Y, Dong W, Chen Q, Wang Y, Zhou P, Gao S, Huang W, Li L, Feng J. Novel Ratiometric Surface-Enhanced Raman Scattering (SERS) Biosensor for Ultrasensitive Quantitative Monitoring of Human Carboxylesterase-1 in Hepatocellular Carcinoma Cells Using Ag-Au Nanoflowers as SERS Substrate. Anal Chem 2024; 96:18555-18563. [PMID: 39498661 DOI: 10.1021/acs.analchem.4c04763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
In this study, we developed ratiometric surface-enhanced Raman scattering (SERS) biosensors using Ag-Au alloy nanoflowers as SERS substrates, molecules having amide bonds and alkyne groups (Tag A) as Raman reporters, and sodium thiocyanate as an internal standard molecule (Tag B) for the sensitive detection of human carboxylesterase-1 (hCE1) in HepG-2 cells. The correlation between HepG-2 cell damage and hCE1 activity levels was investigated. Both Tag A's alkyne group and Tag B's cyanide group produced characteristic SERS signals in the Raman-silent region (I2000 cm-1 and I2115 cm-1, respectively). The hydrolysis of the amide bond in Tag A via hCE1 and the shedding of the alkyne group led to a reduction in the SERS signal intensity observed at I2000 cm-1. Conversely, the SERS signal intensity of Tag B at I2115 cm-1 exhibited a consistent pattern. As the activity level of hCE1 and the ratiometric peak intensity (I2000 cm-1/I2115 cm-1) correlated negatively, hCE1 could be quantitatively detected within the range of 10-2 to 2 × 102 ng·mL-1, with a detection limit of 7.3 pg·mL-1. The ratiometric SERS probe strategy, in which a ratio response is employed, permits sensitive and reproducible SERS detection by facilitating intrinsic calibration to rectify signal fluctuations resulting from temporal and spatial variations in the detection conditions. Concurrently, the implementation of Raman-silent region reporter molecules mitigates the interference from endogenous biomolecules in SERS measurements and offers a novel approach for achieving highly sensitive and interference-free detection of intracellular hCE1.
Collapse
Affiliation(s)
- Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
- Provine and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, Guangxi, P. R. China
| | - Ruijue Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Yaqin Zhan
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Wuheng Dong
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Qiying Chen
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Ying Wang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Pei Zhou
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Si Gao
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| | - Wenyi Huang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
- Provine and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, Guangxi, P. R. China
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
- Provine and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, Guangxi, P. R. China
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, Department of Medicine, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi, P. R. China
| |
Collapse
|
5
|
Li HY, Kong XJ, Han SD, Pang J, He T, Wang GM, Bu XH. Metalation of metal-organic frameworks: fundamentals and applications. Chem Soc Rev 2024; 53:5626-5676. [PMID: 38655667 DOI: 10.1039/d3cs00873h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Metalation of metal-organic frameworks (MOFs) has been developed as a prominent strategy for materials functionalization for pore chemistry modulation and property optimization. By introducing exotic metal ions/complexes/nanoparticles onto/into the parent framework, many metallized MOFs have exhibited significantly improved performance in a wide range of applications. In this review, we focus on the research progress in the metalation of metal-organic frameworks during the last five years, spanning the design principles, synthetic strategies, and potential applications. Based on the crystal engineering principles, a minor change in the MOF composition through metalation would lead to leveraged variation of properties. This review starts from the general strategies established for the incorporation of metal species within MOFs, followed by the design principles to graft the desired functionality while maintaining the porosity of frameworks. Facile metalation has contributed a great number of bespoke materials with excellent performance, and we summarize their applications in gas adsorption and separation, heterogeneous catalysis, detection and sensing, and energy storage and conversion. The underlying mechanisms are also investigated by state-of-the-art techniques and analyzed for gaining insight into the structure-property relationships, which would in turn facilitate the further development of design principles. Finally, the current challenges and opportunities in MOF metalation have been discussed, and the promising future directions for customizing the next-generation advanced materials have been outlined as well.
Collapse
Affiliation(s)
- Hai-Yu Li
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang-Jing Kong
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Jiandong Pang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Tao He
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
- Department of Chemical Science, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Shandong 266071, China.
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Centre, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Evtushenko EG, Gavrilina ES, Vasilyeva AD, Yurina LV, Kurochkin IN. Highly Sensitive Measurement of Horseradish Peroxidase Using Surface-Enhanced Raman Scattering of 2,3-Diaminophenazine. Molecules 2024; 29:793. [PMID: 38398545 PMCID: PMC10891785 DOI: 10.3390/molecules29040793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The development of various enzyme-linked immunosorbent assays (ELISAs) coupled with surface-enhanced Raman scattering (SERS) detection is a growing area in analytical chemistry due to their potentially high sensitivity. A SERS-based ELISA with horseradish peroxidase (HRP) as an enzymatic label, an o-phenylenediamine (oPD) substrate, and a 2,3-diaminophenazine (DAP) enzymatic product was one of the first examples of such a system. However, the full capabilities of this long-known approach have yet to be revealed. The current study addresses a previously unrecognized problem of SERS detection stage performance. Using silver nanoparticles and model mixtures of oPD and DAP, the effects of the pH, the concentration of the aggregating agent, and the particle surface chloride stabilizer were extensively evaluated. At the optimal mildly acidic pH of 3, a 0.93 to 1 M citrate buffer, and AgNPs stabilized with 20 mM chloride, a two orders of magnitude advantage in the limits of detection (LODs) for SERS compared to colorimetry was demonstrated for both DAP and HRP. The resulting LOD for HRP of 0.067 pmol/L (1.3 amol per assay) underscores that the developed approach is a highly sensitive technique. We suppose that this improved detection system could become a useful tool for the development of SERS-based ELISA protocols.
Collapse
Affiliation(s)
- Evgeniy G. Evtushenko
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| | - Elizaveta S. Gavrilina
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
| | - Alexandra D. Vasilyeva
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
| | - Lyubov V. Yurina
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
| | - Ilya N. Kurochkin
- N.M. Emanuel Institute of Biochemical Physics RAS, Kosygina Str. 4, 119334 Moscow, Russia (A.D.V.); (I.N.K.)
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia
| |
Collapse
|
7
|
Mohan B, Neeraj, Virender, Kadiyan R, Singh K, Singh G, Kumar K, Kumar Sharma H, JL Pombeiro A. MOFs composite materials for Pb2+ ions detection in water: recent trends & advances. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|