1
|
Niu H, Zou L, Liu Y, Li Z, Ren H, Liao H, Zhang X, An S, Ren F, Ge X, Cheng L, Yang F, Pan H, Rong S, Chang D, Ma H. CRISPR/Cas System-Based Fluorescent Sensor for Analysis and Detection. Crit Rev Anal Chem 2025:1-16. [PMID: 40125908 DOI: 10.1080/10408347.2025.2481409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Fluorescent sensor is an important tool to reliaze qualitative or quantitative detection of target analyte based on the fluorescence principle. Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) has been utilized to develop as a precise, efficient, and highly sensitive molecular diagnostic tool due to its efficient targeting and gene editing ability. At present, CRISPR/Cas system-based fluorescent sensors have shown excellent performance in the field of analysis and detection, and have received widespread attention. Therefore, this paper reviews the mechanism of the CRISPR/Cas system, the characteristics of different Cas proteins, and the principle and characteristics of the fluorescent sensor, with a focus on summarizing the application of the CRISPR/Cas system-based fluorescent sensor for analysis and detection.
Collapse
Affiliation(s)
- Huiru Niu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Lina Zou
- Nursing School, Mudanjiang Medical University, Mudanjiang, China
| | - Yanan Liu
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Zheng Li
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Huanyu Ren
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hao Liao
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaojing Zhang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Shanshan An
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Fei Ren
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Xiuhong Ge
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Lang Cheng
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Feiyan Yang
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Hongzhi Pan
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| | - Dong Chang
- Department of Clinical Laboratory, the Affiliated Pudong Hospital, Fudan University, Shanghai, China
| | - Hongkun Ma
- Public Health School, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
2
|
Wu X, Xiong S, Tao L, Huang J, Shen X. Hairpin aptamer and ROS-sensitive microcapsule-mediated glycoprotein determination for the prognosis of colorectal cancer. Mikrochim Acta 2024; 192:21. [PMID: 39708094 DOI: 10.1007/s00604-024-06885-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
A novel glycoprotein assay was developed by integrating the hairpin aptamer (H-APT)-mediated glycoprotein recognition and the reactive oxygen species-sensitive microcapsule (ROS-MC)-induced signal amplification. The analyzing process begins with the transfer of the target glycoprotein to a chlorin e6 (Ce6)-labeled DNA sequence via H-APT-mediated DNA displacement. Subsequently, the Ce6-labeled DNA was used to induce the disassembly of fluorophore-loaded ROS-MC under 650-nm light irradiation. Leveraging the rapid release of the fluorophore and the high loading capacity of the MC, this glycoprotein assay is capable of quantifying glycoprotein content in native biofluids within 2.5 h, achieving a detection limit of 0.034 ng/mL. We applied this assay to determine the glycoprotein composition in plasma samples of colorectal cancer patients, revealing a significant increase in glycoprotein content for those with a poor prognosis. In summary, we have developed an innovative method for glycoprotein determination that shows potential for clinical translation.
Collapse
Affiliation(s)
- Xingjie Wu
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China.
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China.
| | - Shasha Xiong
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China
| | - Ling Tao
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China
| | - Jian Huang
- Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550004, China.
- School of Clinical Laboratory Science, Guian New District, Guizhou Medical University, University Town, Guizhou, 550025, China.
| | - Xiangchun Shen
- State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China.
- The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang City and Guian New District, No.6 Ankang Avenue, Guizhou, 561113, China.
| |
Collapse
|
3
|
Rabiee N, Rabiee M. Wearable Aptasensors. Anal Chem 2024; 96:19160-19182. [PMID: 39604058 DOI: 10.1021/acs.analchem.4c05004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
This Perspective explores the revolutionary advances in wearable aptasensor (WA) technology, which combines wearable devices and aptamer-based detection systems for personalized, real-time health monitoring. The devices leverage the specificity and sensitivity of aptamers to target specific molecules, offering broad applications from continuous glucose tracking to early diagnosis of diseases. The integration of data analytics and artificial intelligence (AI) allows early risk prediction and guides preventive health measures. While challenges in miniaturization, power efficiency, and data security persist, these devices hold significant potential to democratize healthcare and reshape patient-doctor interactions.
Collapse
Affiliation(s)
- Navid Rabiee
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Mohammad Rabiee
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 165543, Iran
| |
Collapse
|