1
|
Valid Presumption of Shiga Toxin-Mediated Damage of Developing Erythrocytes in EHEC-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2020; 12:toxins12060373. [PMID: 32512916 PMCID: PMC7354503 DOI: 10.3390/toxins12060373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023] Open
Abstract
The global emergence of clinical diseases caused by enterohemorrhagic Escherichia coli (EHEC) is an issue of great concern. EHEC release Shiga toxins (Stxs) as their key virulence factors, and investigations on the cell-damaging mechanisms toward target cells are inevitable for the development of novel mitigation strategies. Stx-mediated hemolytic uremic syndrome (HUS), characterized by the triad of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury, is the most severe outcome of an EHEC infection. Hemolytic anemia during HUS is defined as the loss of erythrocytes by mechanical disruption when passing through narrowed microvessels. The formation of thrombi in the microvasculature is considered an indirect effect of Stx-mediated injury mainly of the renal microvascular endothelial cells, resulting in obstructions of vessels. In this review, we summarize and discuss recent data providing evidence that HUS-associated hemolytic anemia may arise not only from intravascular rupture of erythrocytes, but also from the extravascular impairment of erythropoiesis, the development of red blood cells in the bone marrow, via direct Stx-mediated damage of maturing erythrocytes, leading to “non-hemolytic” anemia.
Collapse
|
2
|
Wen S, Niedzwiecka K, Zhao W, Xu S, Liang S, Zhu X, Xie H, Tribouillard-Tanvier D, Giraud MF, Zeng C, Dautant A, Kucharczyk R, Liu Z, di Rago JP, Chen H. Identification of G8969>A in mitochondrial ATP6 gene that severely compromises ATP synthase function in a patient with IgA nephropathy. Sci Rep 2016; 6:36313. [PMID: 27812026 PMCID: PMC5095641 DOI: 10.1038/srep36313] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/13/2016] [Indexed: 12/04/2022] Open
Abstract
Here we elucidated the pathogenesis of a 14-year-old Chinese female who initially developed an isolated nephropathy followed by a complex clinical presentation with brain and muscle problems, which indicated that the disease process was possibly due to a mitochondrial dysfunction. Careful evaluation of renal biopsy samples revealed a decreased staining of cells induced by COX and NADH dehydrogenase activities, and a strong fragmentation of the mitochondrial network. These anomalies were due to the presence of a mutation in the mitochondrial ATP6 gene, G8969>A. This mutation leads to replacement of a highly conserved serine residue at position 148 of the a-subunit of ATP synthase. Increasing the mutation load in cybrid cell lines was paralleled by the appearance of abnormal mitochondrial morphologies, diminished respiration and enhanced production of reactive oxygen species. An equivalent of the G8969>A mutation in yeast had dramatic consequences on ATP synthase, with a block in proton translocation. The mutation was particularly abundant (89%) in the kidney compared to blood and urine, which is likely the reason why this organ was affected first. Based on these findings, we suggest that nephrologists should pay more attention to the possibility of a mitochondrial dysfunction when evaluating patients suffering from kidney problems.
Collapse
Affiliation(s)
- Shuzhen Wen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Katarzyna Niedzwiecka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Weiwei Zhao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shutian Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Shaoshan Liang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xiaodong Zhu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Honglang Xie
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Déborah Tribouillard-Tanvier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France.,INSERM, Institut de Biochimie et Génétique Cellulaires, F-33077 Bordeaux, France
| | - Marie-France Giraud
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Alain Dautant
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Róża Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jean-Paul di Rago
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33077 Bordeaux, France.,Université de Bordeaux, IBGC, UMR 5095, F-33077 Bordeaux, France
| | - Huimei Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
3
|
Puelles VG, van der Wolde JW, Schulze KE, Short KM, Wong MN, Bensley JG, Cullen-McEwen LA, Caruana G, Hokke SN, Li J, Firth SD, Harper IS, Nikolic-Paterson DJ, Bertram JF. Validation of a Three-Dimensional Method for Counting and Sizing Podocytes in Whole Glomeruli. J Am Soc Nephrol 2016; 27:3093-3104. [PMID: 26975438 DOI: 10.1681/asn.2015121340] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/02/2016] [Indexed: 11/03/2022] Open
Abstract
Podocyte depletion is sufficient for the development of numerous glomerular diseases and can be absolute (loss of podocytes) or relative (reduced number of podocytes per volume of glomerulus). Commonly used methods to quantify podocyte depletion introduce bias, whereas gold standard stereologic methodologies are time consuming and impractical. We developed a novel approach for assessing podocyte depletion in whole glomeruli that combines immunofluorescence, optical clearing, confocal microscopy, and three-dimensional analysis. We validated this method in a transgenic mouse model of selective podocyte depletion, in which we determined dose-dependent alterations in several quantitative indices of podocyte depletion. This new approach provides a quantitative tool for the comprehensive and time-efficient analysis of podocyte depletion in whole glomeruli.
Collapse
Affiliation(s)
- Victor G Puelles
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - James W van der Wolde
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Keith E Schulze
- Monash Micro Imaging, Monash University, Melbourne, Australia; and
| | - Kieran M Short
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Biochemistry and Molecular Biology, and
| | - Milagros N Wong
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Jonathan G Bensley
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Luise A Cullen-McEwen
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Georgina Caruana
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Stacey N Hokke
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Jinhua Li
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Stephen D Firth
- Monash Micro Imaging, Monash University, Melbourne, Australia; and
| | - Ian S Harper
- Monash Micro Imaging, Monash University, Melbourne, Australia; and
| | | | - John F Bertram
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| |
Collapse
|
4
|
Pippin JW, Kaverina NV, Eng DG, Krofft RD, Glenn ST, Duffield JS, Gross KW, Shankland SJ. Cells of renin lineage are adult pluripotent progenitors in experimental glomerular disease. Am J Physiol Renal Physiol 2015; 309:F341-58. [PMID: 26062877 DOI: 10.1152/ajprenal.00438.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 06/04/2015] [Indexed: 12/31/2022] Open
Abstract
Modified vascular smooth muscle cells of the kidney afferent arterioles have recently been shown to serve as progenitors for glomerular epithelial cells in response to glomerular injury. To determine whether such cells of renin lineage (CoRL) serve as progenitors for other cells in kidney disease characterized by both glomerular and tubulointerstitial injury, permanent genetic cell fate mapping of adult CoRL using Ren1cCreER × Rs-tdTomato-R reporter mice was performed. TdTomato-labeled CoRL were almost completely restricted to the juxtaglomerular compartment in healthy kidneys. Following 2 wk of antibody-mediated focal segmental glomerulosclerosis (FSGS) or 16 wk of ⅚ nephrectomy-induced chronic kidney diseases, tdTomato-mapped CoRL were identified in both interstitial and glomerular compartments. In the interstitium, PDGFβ receptor (R)-expressing cells significantly increased, and a portion of these expressed tdTomato. This was accompanied by a decrease in native pericyte number, but an increase in the number of tdTomato cells that coexpressed the pericyte markers PDGFβ-R and NG2. These cells surrounded vessels and coexpressed the pericyte markers CD73 and CD146, but not the endothelial marker ERG. Within glomeruli of reporter mice with the ⅚ nephrectomy model, a subset of labeled CoRL migrated to the glomerular tuft and coexpressed podocin and synaptopodin. By contrast, labeled CoRL were not detected in glomerular or interstitial compartments following uninephrectomy. These observations indicate that in addition to supplying new adult podocytes to glomeruli, CoRL have the capacity to become new adult pericytes in the setting of interstitial disease. We conclude that CoRL have the potential to function as progenitors for multiple adult cell types in kidney disease.
Collapse
Affiliation(s)
- Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington;
| | | | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Ronald D Krofft
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Sean T Glenn
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York; and
| | - Jeremy S Duffield
- Division of Nephrology, University of Washington, Seattle, Washington; Biogen IDEC, Cambridge, Massachusetts
| | - Kenneth W Gross
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York; and
| | | |
Collapse
|
5
|
Venkatareddy M, Wang S, Yang Y, Patel S, Wickman L, Nishizono R, Chowdhury M, Hodgin J, Wiggins PA, Wiggins RC. Estimating podocyte number and density using a single histologic section. J Am Soc Nephrol 2013; 25:1118-29. [PMID: 24357669 DOI: 10.1681/asn.2013080859] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The reduction in podocyte density to levels below a threshold value drives glomerulosclerosis and progression to ESRD. However, technical demands prohibit high-throughput application of conventional morphometry for estimating podocyte density. We evaluated a method for estimating podocyte density using single paraffin-embedded formalin-fixed sections. Podocyte nuclei were imaged using indirect immunofluorescence detection of antibodies against Wilms' tumor-1 or transducin-like enhancer of split 4. To account for the large size of podocyte nuclei in relation to section thickness, we derived a correction factor given by the equation CF=1/(D/T+1), where T is the tissue section thickness and D is the mean caliper diameter of podocyte nuclei. Normal values for D were directly measured in thick tissue sections and in 3- to 5-μm sections using calibrated imaging software. D values were larger for human podocyte nuclei than for rat or mouse nuclei (P<0.01). In addition, D did not vary significantly between human kidney biopsies at the time of transplantation, 3-6 months after transplantation, or with podocyte depletion associated with transplant glomerulopathy. In rat models, D values also did not vary with podocyte depletion, but increased approximately 10% with old age and in postnephrectomy kidney hypertrophy. A spreadsheet with embedded formulas was created to facilitate individualized podocyte density estimation upon input of measured values. The correction factor method was validated by comparison with other methods, and provided data comparable with prior data for normal human kidney transplant donors. This method for estimating podocyte density is applicable to high-throughput laboratory and clinical use.
Collapse
Affiliation(s)
| | - Su Wang
- Departments of Internal Medicine
| | - Yan Yang
- Departments of Internal Medicine
| | | | | | | | | | - Jeffrey Hodgin
- Pathology, University of Michigan, Ann Arbor, Michigan; and
| | - Paul A Wiggins
- Department of Physics and Department of Bioengineering, University of Washington, Seattle, Washington
| | | |
Collapse
|
6
|
Cheng D, Shen S, Chen XM, Pollock C, Braet F. Application of transmission electron tomography for modeling the renal corpuscle. Pathol Res Pract 2013; 209:731-4. [PMID: 24064283 DOI: 10.1016/j.prp.2013.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/15/2013] [Accepted: 06/23/2013] [Indexed: 10/26/2022]
Abstract
Structural alteration to the microanatomical organization of the glomerular filtration barrier results in proteinuria. Conventional transmission electron microscopy is an important diagnostic tool to assess the degree of ultrastructural damage of the corpusclar filtration unit. However, this approach lacks the ability to collect accurate stereological insights in a relative large tissue volume. Transmission electron tomography offers the ability to gather three-dimensional information with relative ease. Therefore, this contribution aims to highlight what electron tomography can bring to the pathologist in this challenging area of diagnostic practice. Kidney tissue was prepared for routine ultrastructural transmission electron microscopy investigation. Three-dimensional data stacks were automatically acquired by tilting semi-thin sections of 270 nm in an angular range of typically -60° to +60° with 1° increment. Subsequently, models of the filtration unit were produced by computer-assisted tracking of structures of interest. This short report illustrates the capability that transmission electron tomography can offer in the fine structure-function assessment of the porous fenestrated glomerular capillary endothelium, the underlying basement membrane and the podocyte filtration slits. Furthermore, this approach allows the generation of morphometric data about size, shape and volume alterations of the kidney's filtration barrier at the nanoscale.
Collapse
Affiliation(s)
- Delfine Cheng
- School of Medical Sciences (Discipline of Anatomy and Histology) - The Bosch Institute, The University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
7
|
Miyama A, Yamada M, Sugaya S, Seki M. A droplet-based microfluidic process to produce yarn-ball-shaped hydrogel microbeads. RSC Adv 2013. [DOI: 10.1039/c3ra41747f] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|