1
|
Hayashida M, Yamasaki J, Malac M. Sample thickness affects contrast and measured shape in TEM images and in electron tomograms. Micron 2024; 177:103562. [PMID: 37992499 DOI: 10.1016/j.micron.2023.103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
We investigated the effect of nanoparticle (NP) image broadening and its contrast change dependence on a support matrix thickness in a transmission electron microscope (TEM). We measured the effect of NP size and atomic number on its image broadening. Based on the experimental TEM images we generated tomograms of NPs on four types of support matrix. The measured shape aspect ratio of the NPs in such tomograms depends on the geometry of the support matrix. For example, the aspect ratio of 6 nm NP placed on a thin film with window-frame support is 1.14, while the aspect ratio of 6 nm NP on a rod-shaped support with 910 nm diameter is 1.67 in a tomogram.
Collapse
Affiliation(s)
- Misa Hayashida
- NRC-NANO, National Research Council, Edmonton, Alberta T6G 2M9, Canada.
| | - Jun Yamasaki
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki 567-0047, Japan; Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8601, Japan
| | - Marek Malac
- NRC-NANO, National Research Council, Edmonton, Alberta T6G 2M9, Canada; Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
2
|
Nair AB, Chaudhary S, Jacob S, Patel D, Shinu P, Shah H, Chaudhary A, Aldhubiab B, Almuqbil RM, Alnaim AS, Alqattan F, Shah J. Intranasal Administration of Dolutegravir-Loaded Nanoemulsion-Based In Situ Gel for Enhanced Bioavailability and Direct Brain Targeting. Gels 2023; 9:gels9020130. [PMID: 36826300 PMCID: PMC9956165 DOI: 10.3390/gels9020130] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Dolutegravir's therapeutic effectiveness in the management of neuroAIDS is mainly limited by its failure to cross the blood-brain barrier. However, lipid-based nanovesicles such as nanoemulsions have demonstrated their potential for the brain targeting of various drugs by intranasal delivery. Thus, the purpose of this study was to develop a Dolutegravir-loaded nanoemulsion-based in situ gel and evaluate its prospective for brain targeting by intranasal delivery. Dolutegravir-loaded nanoemulsions were prepared using dill oil, Tween® 80, and Transcutol® P. Optimization of the nanoemulsion particle size and drug release was carried out using a simplex lattice design. Formulations (F1-F7 and B1-B6) were assessed for various pharmaceutical characteristics. Ex vivo permeation and ciliotoxicity studies of selected in situ gels (B1) were conducted using sheep nasal mucosa. Drug targeting to the brain was assessed in vivo in rats following the nasal delivery of B1. The composition of oil, surfactant, and cosurfactant significantly (p < 0.05) influenced the dependent variables (particle size and % of drug release in 8 h). Formulation B1 exhibits pharmaceutical characteristics that are ideal for intranasal delivery. The mucosal steady-state flux noticed with BI was significantly greater (p < 0.005) than for the control gel. A histopathology of nasal mucosa treated with BI showed no signs of toxicity or cellular damage. Intranasal administration of B1 resulted in greater Cmax (~six-fold, p < 0.0001) and AUC0-α (~five-fold, p < 0.0001), and decreased Tmax (1 h) values in the brain, compared to intravenous administration. Meantime, the drug level in the plasma was relatively low, suggesting less systemic exposure to Dolutegravir through intranasal delivery. In summary, the promising data observed here signifies the prospective of B1 to enhance the brain targeting of Dolutegravir by intranasal delivery and it could be used as a feasible and practicable strategy for the management of neuroAIDS.
Collapse
Affiliation(s)
- Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence: (A.B.N.); (J.S.); Tel.: +966-536219868 (A.B.N.); +91-9909007411 (J.S.)
| | - Sunita Chaudhary
- Department of Pharmaceutics, Arihant School of Pharmacy & BRI, Adalaj, Gandhinagar 382421, India
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Dhwani Patel
- Department of Pharmaceutics, Arihant School of Pharmacy & BRI, Adalaj, Gandhinagar 382421, India
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hiral Shah
- Department of Pharmaceutics, Arihant School of Pharmacy & BRI, Adalaj, Gandhinagar 382421, India
| | - Ankit Chaudhary
- Department of Quality Assurance, Saraswati Institute of Pharmaceutical Sciences, Gandhinagar 382355, India
| | - Bandar Aldhubiab
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Rashed M. Almuqbil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ahmed S. Alnaim
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fatemah Alqattan
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India
- Correspondence: (A.B.N.); (J.S.); Tel.: +966-536219868 (A.B.N.); +91-9909007411 (J.S.)
| |
Collapse
|
3
|
Cao M, Nishi R, Wang F. Automatic system for electron tomography data collection in the ultra-high voltage electron microscope. Micron 2017; 103:29-33. [PMID: 28946024 DOI: 10.1016/j.micron.2017.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 10/18/2022]
Abstract
In this study, we report an automatic system for collection of tilt series for electron tomography based on the ultra-HVEM in Osaka University. By remotely controlling the microscope and reading the observation image, the system can track the field of view and do focus in each tilt angle. The automatic tracking is carried out with an image matching technique based on normalized correlation coefficient. Auto focus is realized by the optimization of image sharpness. A toolkit that can expand the field of view with technique of image stitching is also developed. The system can automatically collect the tilt series with much smaller time consumption.
Collapse
Affiliation(s)
- Meng Cao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Research Centre for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| | - Ryuji Nishi
- Research Centre for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Fang Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|