1
|
Rojas V, Jugdaohsingh R, Rayment A, Brown A, Fenn J, Crowley J, Lovric V, Powell J, Freeman P. Applying the Techniques of Materials Science towards an Understanding of the Process of Canine Intervertebral Disc Degeneration. Animals (Basel) 2024; 14:2665. [PMID: 39335255 PMCID: PMC11428788 DOI: 10.3390/ani14182665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Intervertebral disc degeneration in dogs occurs in an accelerated way and involves calcification, which is associated with disc herniation or extrusion. The degenerative process is complex and involves the transformation of collagen fibres, loss of proteoglycans and notochord cells and a reduction in water content; however, how these processes are linked to future disc extrusion remains unknown. We have employed techniques including Fourier Transform Infra-red Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Uniaxial Compression Loading and Atomic Force Microscopy (AFM) in an attempt to gain a greater understanding of the degenerative process and its consequences on the physical properties of the disc. FTIR verified by TEM demonstrated that calcium phosphate exists in an amorphous state within the disc and that the formation of crystalline particles of hydroxyapatite occurs prior to disc extrusion. AFM identified crystalline agglomerates consistent with hydroxyapatite as well as individual collagen fibres. SEM enabled the identification of regions rich in calcium, phosphorous and oxygen and allowed the visualization of the topographical landscape of the disc. Compression testing generated stress/strain curves which will facilitate investigation into disc stiffness. Ongoing work is aimed at identifying potential areas of intervention in the degenerative process as well as further characterizing the role of calcification in disc extrusion.
Collapse
Affiliation(s)
- Viviana Rojas
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Ravin Jugdaohsingh
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Andrew Rayment
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge CB3 0ES, UK
| | - Andrew Brown
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Joseph Fenn
- Clinical Sciences & Services, Royal Veterinary College, London NW1 0TU, UK
| | - James Crowley
- Small Animal Specialist Hospital, Alexandria, Sydney, NSW 2015, Australia
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Vedran Lovric
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical School, Faculty of Medicine, University of New South Wales, Sydney NSW 2052, Australia
| | - Jonathan Powell
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Paul Freeman
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| |
Collapse
|
2
|
Li X, Hou Q, Yuan W, Zhan X, Yuan H. Inhibition of miR-96-5p alleviates intervertebral disc degeneration by regulating the peroxisome proliferator-activated receptor γ/nuclear factor-kappaB pathway. J Orthop Surg Res 2023; 18:916. [PMID: 38041147 PMCID: PMC10691123 DOI: 10.1186/s13018-023-04412-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is the main pathogenesis of low back pain. MicroRNAs (miRNAs) have been found to exert regulatory function in IDD. This study aimed to investigate the effect and potential mechanism of miR-96-5p in IDD. METHODS In vitro cell model of IDD was established by treating human nucleus pulposus cells (HNPCs) with interleukin-1β (IL-1β). The level of peroxisome proliferator-activated receptor γ (PPARγ) was examined in the IDD cell model by Western blot and quantification real-time reverse transcription-polymerase chain reaction (qRT-PCR). The expression level of miR-96-5p was detected by RT-qPCR. Effects of PPARγ or/and PPARγ agonist on inflammatory factors, extracellular matrix (ECM), apoptosis, and nuclear factor-kappaB (NF-κB) nuclear translocation were examined through enzyme-linked immunosorbent assay (ELISA), Western blot, flow cytometry assay, and immunofluorescence staining. The Starbase database and dual luciferase reporter assay were used to predict and validate the targeting relationship between miR-96-5p and PPARγ, and rescue assay was performed to gain insight into the role of miR-96-5p on IDD through PPARγ/NF-κB signaling. RESULTS PPARγ expression reduced with concentration and time under IL-1β stimulation, while miR-96-5p expression showed the reverse trend (P < 0.05). Upregulation or/and activation of PPARγ inhibited IL-1β-induced the increase in inflammatory factor levels, apoptosis, degradation of the ECM, and the nuclear translocation of NF-κB (P < 0.05). MiR-96-5p was highly expressed but PPARγ was lowly expressed in IDD, while knockdown of PPARγ partially reversed remission of IDD induced by miR-96-5p downregulation (P < 0.05). MiR-96-5p promoted NF-κB entry into the nucleus but PPARγ inhibited this process. CONCLUSION Inhibition of miR-96-5p suppressed IDD progression by regulating the PPARγ/NF-κB pathway. MiR-96-5p may be a promising target for IDD treatment clinically.
Collapse
Affiliation(s)
- Xusheng Li
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, 47000, Malaysia
| | - Qian Hou
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
| | - Wenqi Yuan
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
| | - Xuehua Zhan
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China
| | - Haifeng Yuan
- Department of Spine Surgery, General Hospital of Ningxia Medical University, No. 804 Shengli Street, Xingqing District, Yinchuan, 750004, China.
| |
Collapse
|
3
|
Li W, Zhao H, Xiong Z, Li C, Guan J, Liu T, Yang Y, Yu X. Evaluation of the Efficacy of Stem Cell Therapy in Animal Models of Intervertebral Disc Degeneration Based on Imaging Indicators: A Systematic Review and Meta-Analysis. Stem Cells Int 2022; 2022:2482653. [PMID: 36093439 PMCID: PMC9453002 DOI: 10.1155/2022/2482653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Objective The purpose of this study is to make a systematic review of the therapeutic effect of stem cells in animal models of disc degeneration from an imaging point of view. Methods Data were extracted by searching electronic databases for RCTs that met the inclusion criteria. Data analysis was performed using RevMan 5.3 and STATA 15.1 software. This meta-analysis was registered with INPLASY, registration number INPLASY202240148. Results A total of 34 studies were included, covering four species of animals, rabbits, sheep, rats, and mice, with a total of 1163 intervertebral discs. In terms of DHI, the efficacy of stem cell group in rabbits (P < 0.001), mice (P < 0.001), sheep (P < 0.001), and rats (P = 0.001) was better than that in control group. In terms of disc height, the efficacy of stem cell group in rats (P < 0.001) was better than that in control group, while in sheep (P = 0.355), there was no statistical difference between two groups. In terms of MRI index, the efficacy of stem cell group in rats (P < 0.001), mice (P < 0.001), and rabbits (P = 0.016) was better than that in control group. In terms of MRI signal score, the efficacy of stem cell group in rabbits (P < 0.001) was better than that of control group. In terms of T2 signal intensity, stem cell group was more effective than control group in rabbits (P < 0.001), mice (P < 0.001), and rats (P = 0.003). Conclusion Stem cell therapy can improve intervertebral disc-related imaging parameters in animal models of disc degeneration, indicating that stem cell therapy has a repairing effect on intervertebral discs. However, given the heterogeneity and limitations of this study, this conclusion still needs to be tested by a large number of studies.
Collapse
Affiliation(s)
- Wenhao Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - He Zhao
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | | | - Chuanhong Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jianbin Guan
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Tao Liu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yongdong Yang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xing Yu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
4
|
The Correlation of Regional Microstructure and Mechanics of the Cervical Articular Process in Adults. MATERIALS 2021; 14:ma14216409. [PMID: 34771937 PMCID: PMC8585171 DOI: 10.3390/ma14216409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/27/2021] [Accepted: 08/02/2021] [Indexed: 11/26/2022]
Abstract
Purpose: Using micro-CT and finite element analysis to establish regional variation microarchitectures and correlation with mechanical properties of cervical articular facet trabecular bone to predict cervical spine security and material properties. Methods: A total of 144 cervical articular processes (each articular was separate to four region of interest (ROI), superior-anterior (SA), superior-posterior (SP), inferior-anterior (IA), and inferior-posterior (IP) regions) specimens with a volume of 5 × 5 × 5 mm3 were scanned by micro-CT, and allowable stress and other mechanical properties parameters in each region were calculated after mechanical testing, then the effectiveness was verified of finite element models by ABAQUS software. Results: Maximum and minimum values of C2–C7 articular processes and regions are C5 and C7 level, SA and SP regions for bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), whose variation tendency is similar to the Young’s modulus, allowable stress, BMD, maximum force and strain. Between Young’s modulus and all microstructure parameters, especially between BV/TV, bone mineral density (BMD) and Tb.Th, had higher linear regression coefficients R2 = 0.5676, 0.6382, 0.3535, respectively. BMD and yield strength, BV/TV, and allowable stress also had better regression coefficients, R2 = 0.5227, 0.5259, 0.5426, respectively. Conclusions: The contribution of the microstructure and mechanical properties of the C2–C7 cervical spine to the movement of the cervical spine is different and has a good correlation and the effectiveness of the finite element model is also verified that we can correctly calculate the microstructure and mechanical properties of the cervical articular process to evaluate the stability and injury risk of cervical vertebrae by the established model.
Collapse
|
5
|
Luo Z, Ma Y, Di T, Ma B, Li H, An J, Wang Y, Zhang H. DNMT3B decreases extracellular matrix degradation and alleviates intervertebral disc degeneration through TRPA1 methylation to inhibit the COX2/YAP axis. Aging (Albany NY) 2021; 13:20258-20276. [PMID: 34428744 PMCID: PMC8436916 DOI: 10.18632/aging.203410] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/08/2021] [Indexed: 01/14/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a main cause of low back pain that is associated with extracellular matrix (ECM) degradation and inflammation. This study aims to investigate the role of DNMT3B and its regulatory mechanisms in IVDD. IVDD rat models were constructed followed by transfections with oe-DNMT3B or oe-YAP in order to explore the role of DNMT3B in the development of IVDD. After that transfection, nucleus pulposus (NP) cells were isolated and transfected with oe-DNMT3B, oe-TRPA1, si-YAP, oe-YAP or oe-COX2 in order to investigate the functions of DNMT3B in NP cells. DNMT3B was poorly expressed in IVDD tissues and NP cells whereas TRPA1, COX2, and YAP were highly expressed. The proliferation or apoptosis of NP cells was detected through CCK-8 assay or flow cytometry, respectively. Overexpression of DNMT3B promoted the proliferation of NP cells, inhibited their apoptosis, as well as increasing the expression of collagen II and aggrecan and decreasing expression of MMP3 and MMP9. Besides, DNMT3B suppressed inflammation and alleviated IVDD. Mechanistically, DNMT3B modified the TRPA1 promoter by methylation to inhibit the expression of COX2. Overexpression of COX2 promoted the apoptosis of NP cells and decreased the expression of YAP, which was reversed by upregulating DNMT3B. DNMT3B may promote the proliferation of NP cells and prevent their ECM degradation through the TRPA1/COX2/YAP axis, thereby alleviating IVDD in rats.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Yanchao Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Tianning Di
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Bing Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Hongwei Li
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Jiangdong An
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Yonggang Wang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Haihong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| |
Collapse
|
6
|
Friedmann A, Baertel A, Schmitt C, Ludtka C, Milosevic J, Meisel HJ, Goehre F, Schwan S. Intervertebral Disc Regeneration Injection of a Cell-Loaded Collagen Hydrogel in a Sheep Model. Int J Mol Sci 2021; 22:4248. [PMID: 33921913 PMCID: PMC8072963 DOI: 10.3390/ijms22084248] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/26/2022] Open
Abstract
Degenerated intervertebral discs (IVDs) were treated with autologous adipose-derived stem cells (ASC) loaded into an injectable collagen scaffold in a sheep model to investigate the implant's therapeutic potential regarding the progression of degeneration of previously damaged discs. In this study, 18 merino sheep were subjected to a 3-step minimally invasive injury and treatment model, which consisted of surgically induced disc degeneration, treatment of IVDs with an ASC-loaded collagen hydrogel 6 weeks post-operatively, and assessment of the implant's influence on degenerative tissue changes after 6 and 12 months of grazing. Autologous ASCs were extracted from subcutaneous adipose tissue and cultivated in vitro. At the end of the experiment, disc heights were determined by µ-CT measurements and morphological tissue changes were histologically examined.Histological investigations show that, after treatment with the ASC-loaded collagen hydrogel implant, degeneration-specific features were observed less frequently. Quantitative studies of the degree of degeneration did not demonstrate a significant influence on potential tissue regeneration with treatment. Regarding disc height analysis, at both 6 and 12 months after treatment with the ASC-loaded collagen hydrogel implant a stabilization of the disc height can be seen. A complete restoration of the intervertebral disc heights however could not be achieved.The reported injection procedure describes in a preclinical model a translational therapeutic approach for degenerative disc diseases based on adipose-derived stem cells in a collagen hydrogel scaffold. Further investigations are planned with the use of a different injectable scaffold material using the same test model.
Collapse
Affiliation(s)
- Andrea Friedmann
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle, Germany; (A.F.); (C.S.)
| | - Andre Baertel
- Department of Veterinary Medicine, University of Leipzig, 04103 Leipzig, Germany;
| | - Christine Schmitt
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle, Germany; (A.F.); (C.S.)
- Department for Orthopaedics and Traumatology, Martin Luther University, Halle Wittenberg, 06120 Halle, Germany
| | - Christopher Ludtka
- Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611, USA;
| | | | - Hans-Joerg Meisel
- Department of Neurosurgery, BG Klinikum Bergmannstrost, 06110 Halle, Germany; (H.-J.M.); (F.G.)
| | - Felix Goehre
- Department of Neurosurgery, BG Klinikum Bergmannstrost, 06110 Halle, Germany; (H.-J.M.); (F.G.)
- Department of Neurosurgery, University of Helsinki and Helsinki University Hospital, 00260 Helsinki, Finland
| | - Stefan Schwan
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle, Germany; (A.F.); (C.S.)
| |
Collapse
|
7
|
Zheng K, Du D. Recent advances of hydrogel-based biomaterials for intervertebral disc tissue treatment: A literature review. J Tissue Eng Regen Med 2021; 15:299-321. [PMID: 33660950 DOI: 10.1002/term.3172] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Low back pain is an increasingly prevalent symptom mainly associated with intervertebral disc (IVD) degeneration. It is highly correlated with aging, as the nucleus pulposus (NP) dehydrates and annulus fibrosus fissure formatting, which finally results in the IVD herniation and related clinical symptoms. Hydrogels have been drawing increasing attention as the ideal candidates for IVD degeneration because of their unique properties such as biocompatibility, highly tunable mechanical properties, and especially the water absorption and retention ability resembling the normal NP tissue. Numerous innovative hydrogel polymers have been generated in the most recent years. This review article will first briefly describe the anatomy and pathophysiology of IVDs and current therapies with their limitations. Following that, the article introduces the hydrogel materials in the classification of their origins. Next, it reviews the recent hydrogel polymers explored for IVD regeneration and analyses what efforts have been made to overcome the existing limitations. Finally, the challenges and prospects of hydrogel-based treatments for IVD tissue are also discussed. We believe that these novel hydrogel-based strategies may shed light on new possibilities in IVD degeneration disease.
Collapse
Affiliation(s)
- Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dajiang Du
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
8
|
Liao Z, Wu X, Song Y, Luo R, Yin H, Zhan S, Li S, Wang K, Zhang Y, Yang C. Angiopoietin-like protein 8 expression and association with extracellular matrix metabolism and inflammation during intervertebral disc degeneration. J Cell Mol Med 2019; 23:5737-5750. [PMID: 31211513 PMCID: PMC6653761 DOI: 10.1111/jcmm.14488] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/12/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is considered the primary culprit for low back pain. Although the underlying mechanisms remain unknown, hyperactive catabolism of the extracellular matrix (ECM) and inflammation are suggested to play critical roles in IDD progression. This study was designed to elucidate the role of angiopoietin-like protein 8 (ANGPTL8) in the progression of IDD, especially the relationship of ANGPTL8 with ECM metabolism and inflammation. A positive association between ANGPTL8 expression and degenerative grades of IDD was detected in the analysis of human nucleus pulposus tissue samples. Silencing of ANGPTL8 attenuated the degradation of the anabolic protein type collagen II, and reduced the expression of the catabolic proteins MMP3 and MMP9, and the inflammatory cytokine IL-6 through inhibition of NF-κB signalling activation. In addition, the effect of ANGPTL8 was evaluated in a rat model of puncture-induced IDD. Based on the imaging results and histological examination in animal study, knockdown of ANGPTL8 was demonstrated to ameliorate the IDD progression. These results demonstrate the detrimental role of ANGPTL8 expression in the pathogenesis of IDD and may provide a new therapeutic target for IDD treatment.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xinghuo Wu
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yu Song
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Rongjin Luo
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Huipeng Yin
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shengfeng Zhan
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shuai Li
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Kun Wang
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yukun Zhang
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Cao Yang
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Schwan S, Ludtka C, Friedmann A, Mendel T, Meisel HJ, Heilmann A, Kaden I, Goehre F. Calcium Microcrystal Formation in Recurrent Herniation Patients After Autologous Disc Cell Transplantation. Tissue Eng Regen Med 2017; 14:803-814. [PMID: 30603529 DOI: 10.1007/s13770-017-0076-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 07/04/2017] [Accepted: 07/12/2017] [Indexed: 12/25/2022] Open
Abstract
Autologous disc cell transplantation (ADCT) is a cell-based therapy aiming to initiate regeneration of intervertebral disc (IVD) tissue, but little is known about potential risks. This study aims to investigate the presence of structural phenomena accompanying the transformation process after ADCT treatment in IVD disease. Structural phenomena of ADCT-treated patients (Group 1, n = 10) with recurrent disc herniation were compared to conventionally-treated patients with recurrent herniation (Group 2, n = 10) and patients with a first-time herniation (Group 3, n = 10). For ethical reasons, a control group of ADCT patients who did not have a recurrent disc herniation was not possible. Tissue samples were obtained via micro-sequestrectomy after disc herniation and analyzed by micro-computed tomography, scanning electron microscopy, energy dispersive spectroscopy, and histology in terms of calcification zones, tissue structure, cell density, cell morphology, and elemental composition. The major differentiator between sample groups was calcium microcrystal formation in all ADCT samples, not found in any of the control group samples, which may indicate disc degradation. The incorporation of mineral particles provided clear contrast between the different materials and chemical analysis of a single particle indicated the presence of magnesium-containing calcium phosphate. As IVD calcification is a primary indicator of disc degeneration, further investigation of ADCT and detailed investigations assessing each patient's Pfirrmann degeneration grade following herniation is warranted. Structural phenomena unique to ADCT herniation prompt further investigation of the therapy's mechanisms and its effect on IVD tissue. However, the impossibility of a perfect control group limits the generalizable interpretation of the results.
Collapse
Affiliation(s)
- S Schwan
- 1Translational Centre of Regenerative Medicine TRM, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany.,2Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Huelse-Str. 1, 06120 Halle (Saale), Germany
| | - C Ludtka
- 1Translational Centre of Regenerative Medicine TRM, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany.,2Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Huelse-Str. 1, 06120 Halle (Saale), Germany.,3Department of Chemical and Biomolecular Engineering, University of Tennessee, 1512 Middle Drive, Knoxville, TN 37996 USA
| | - A Friedmann
- 1Translational Centre of Regenerative Medicine TRM, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany.,2Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Huelse-Str. 1, 06120 Halle (Saale), Germany
| | - T Mendel
- 4Department of Trauma Surgery, Friedrich-Schiller-University, Am Klinikum 1, 07747 Jena, Germany.,Department of Trauma Surgery, BG-Klinikum Bergmannstrost Halle, Merseburger Straße 165, 06112 Halle (Saale), Germany
| | - H J Meisel
- Department of Neurosurgery, BG-Klinikum Bergmannstrost Halle, Merseburger Straße 165, 06112 Halle (Saale), Germany
| | - A Heilmann
- 2Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Huelse-Str. 1, 06120 Halle (Saale), Germany
| | - I Kaden
- Department of Diagnostic Imaging and Interventional Radiology, BG-Klinikum Bergmannstrost Halle, Merseburger Straße 165, 06112 Halle (Saale), Germany
| | - F Goehre
- 1Translational Centre of Regenerative Medicine TRM, University of Leipzig, Philipp-Rosenthal-Straße 55, 04103 Leipzig, Germany.,Department of Neurosurgery, BG-Klinikum Bergmannstrost Halle, Merseburger Straße 165, 06112 Halle (Saale), Germany.,Department of Neurosurgery, Helsinki University Central Hospital, University of Helsinki, Topeliuksenkatu 5, 00029 Helsinki, Finland
| |
Collapse
|
10
|
Goehre F, Ludtka C, Hamperl M, Friedmann A, Straube A, Mendel T, Heilmann A, Meisel HJ, Schwan S. Micro-computed tomography, scanning electron microscopy and energy X-ray spectroscopy studies of facet joint degeneration: A comparison to clinical imaging. Micron 2017; 100:50-59. [DOI: 10.1016/j.micron.2017.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/28/2022]
|