1
|
Huang J, Wang J, Guo L, Wu D, Yan S, Chang T, Cui H. Organelle Imaging with Terahertz Scattering-Type Scanning Near-Field Microscope. Int J Mol Sci 2023; 24:13630. [PMID: 37686436 PMCID: PMC10488156 DOI: 10.3390/ijms241713630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023] Open
Abstract
Organelles play core roles in living beings, especially in internal cellular actions, but the hidden information inside the cell is difficult to extract in a label-free manner. In recent years, terahertz (THz) imaging has attracted much attention because of its penetration depth in nonpolar and non-metallic materials and label-free, non-invasive and non-ionizing ability to obtain the interior information of bio-samples. However, the low spatial resolution of traditional far-field THz imaging systems and the weak dielectric contrast of biological samples hinder the application of this technology in the biological field. In this paper, we used an advanced THz scattering near-field imaging method for detecting chloroplasts on gold substrate with nano-flatness combined with an image processing method to remove the background noise and successfully obtained the subcellular-grade internal reticular structure from an Arabidopsis chloroplast THz image. In contrast, little inner information could be observed in the tea chloroplast in similar THz images. Further, transmission electron microscopy (TEM) and mass spectroscopy (MS) were also used to detect structural and chemical differences inside the chloroplasts of Arabidopsis and tea plants. The preliminary results suggested that the interspecific different THz information is related to the internal spatial structures of chloroplasts and metabolite differences among species. Therefore, this method could open a new way to study the structure of individual organelles.
Collapse
Affiliation(s)
- Jie Huang
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; (J.H.); (D.W.)
| | - Jie Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (J.W.); (H.C.)
| | - Linghui Guo
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Wuhan 430070, China;
| | - Dianxing Wu
- State Key Laboratory of Rice Biology, Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029, China; (J.H.); (D.W.)
| | - Shihan Yan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (J.W.); (H.C.)
| | - Tianying Chang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hongliang Cui
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; (J.W.); (H.C.)
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Cerezo IM, Fumanal M, Tapia-Paniagua ST, Bautista R, Anguís V, Fernández-Díaz C, Alarcón FJ, Moriñigo MA, Balebona MC. Solea senegalensis Bacterial Intestinal Microbiota Is Affected by Low Dietary Inclusion of Ulva ohnoi. Front Microbiol 2022; 12:801744. [PMID: 35211100 PMCID: PMC8861459 DOI: 10.3389/fmicb.2021.801744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
The inclusion of macroalgae in the diets of farmed fish offers the opportunity for an added-value dietary ingredient to the nutraceutical feed. The composition of algae varies greatly among species. Several Ulva species have been considered in aquafeed formulations for different farmed fish, and Ulva ohnoi is being applied recently. However, the effects of seaweed dietary inclusion on the host must be evaluated. Considering the important role of the host intestinal microbiota, the potential effects of U. ohnoi dietary inclusion need to be studied. In this study, the characterization of the intestinal microbiome of Solea senegalensis, a flatfish with high potential for aquaculture in South Europe, receiving U. ohnoi (5%)-supplemented diet for 90 days has been carried out. In addition, the functional profiles of bacterial communities have been determined by using PICRUSt, a computational approach to predict the functional composition of a metagenome by using marker gene data and a database of reference genomes. The results show that long-term dietary administration of U. ohnoi (5%)-supplemented feed modulates S. senegalensis intestinal microbiota, especially in the posterior intestinal section. Increased relative abundance of Vibrio jointly with decreased Stenotrophomonas genus has been detected in fish receiving Ulva diet compared to control-fed fish. The influence of the diet on the intestinal functionality of S. senegalensis has been studied for the first time. Changes in bacterial composition were accompanied by differences in predicted microbiota functionality. Increased abundance of predicted genes involved in xenobiotic biodegradation and metabolism were observed in the microbiota when U. ohnoi diet was used. On the contrary, predicted percentages of genes associated to penicillin and cephalosporin biosynthesis as well as beta-lactam resistance were reduced after feeding with Ulva diet.
Collapse
Affiliation(s)
- Isabel M. Cerezo
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
- Unidad de Bioinformática – SCBI, Universidad de Málaga, Málaga, Spain
| | - Milena Fumanal
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
| | | | - Rocio Bautista
- Unidad de Bioinformática – SCBI, Universidad de Málaga, Málaga, Spain
| | | | | | | | - Miguel A. Moriñigo
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
| | - M. Carmen Balebona
- Departamento de Microbiología, Facultad de Ciencias, Ceimar-Universidad de Málaga, Málaga, Spain
| |
Collapse
|
3
|
Kona R, Mohan SV. Draft genome analysis, poly-phasic study and lipid biosynthesis pathway of Scenedesmus sp. SVMIICT1. BIORESOURCE TECHNOLOGY 2021; 341:125809. [PMID: 34479141 DOI: 10.1016/j.biortech.2021.125809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
A comprehensive polyphasic evaluation of a microalgal isolate Scenedesmus sp. SVMIICT1 through morphological, biochemical, photosynthetic characterization, next-generation sequencing and lipid pathway analysis was reported. The strain was cultivated photo-autotrophically, where the maximum photosynthetic yield (FV/FM) of 0.75 was observed on the 4th day with optimal PSII photochemical efficiency. Enhanced electron transport rate (ETR(I)) with inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) resulted in cyclic electron flow. A fair share of carbohydrate content (36 µg/mg) was ascribed to the presence of pyrenoid towards higher CO2 sequestration pursuant to carbon concentrating mechanism (CCM). Denovo sequencing of the genome was assembled, annotated for the prediction of gene and protein. KEGG automatic annotation server (KAAS) analysis depicted the presence of genes accompanying the biosynthesis of the glycerophospholipid pathway. Fatty acid profile represented a higher fraction of palmitic acid (C16:0; 41.6%) followed by alpha-linolenic acid (C18:3; 44.5%).
Collapse
Affiliation(s)
- Rajesh Kona
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES) Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Hao Y, Qu T, Guan C, Zhao X, Hou C, Tang X, Wang Y. Competitive advantages of Ulva prolifera from Pyropia aquaculture rafts in Subei Shoal and its implication for the green tide in the Yellow Sea. MARINE POLLUTION BULLETIN 2020; 157:111353. [PMID: 32658704 DOI: 10.1016/j.marpolbul.2020.111353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The physiological characteristics of Ulva prolifera and Blidingia sp. during two pre-bloom stages (March & May) were compared to evaluate the competitive advantage of U. prolifera on Pyropia aquaculture rafts in Subei Shoal. (1) Compared to Blidingia sp., U. prolifera had a lower growth rate, chlorophyll content, photosynthetic efficiency, and antioxidant capacity in March. (2) In May, various indicators of U. prolifera's physiological function improved significantly, while the antioxidant capacity of Blidingia sp. decreased significantly. Large lipidic globules in U. prolifera cells became scattered small lipidic globules in May, which indicated a decrease in lipid membrane peroxidation. (3) In U. prolifera, the ratio of buoyancy to gravity of per unit volume was 1.73, and the bubbles inside the thalli provided 60% of the total buoyancy. Buoyancy generated by the inflatable structure of U. prolifera allowed this species to float after being separated from the rafts.
Collapse
Affiliation(s)
- Ya Hao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Chen Guan
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Xinyu Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
5
|
Surducan V, Surducan E, Neamtu C, Mot AC, Ciorîță A. Effects of Long-Term Exposure to Low-Power 915 MHz Unmodulated Radiation on Phaseolus vulgaris L. Bioelectromagnetics 2020; 41:200-212. [PMID: 32030775 DOI: 10.1002/bem.22253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/21/2020] [Indexed: 11/10/2022]
Abstract
The morphophysiological response of Phaseolus vulgaris L. to low-power electromagnetic radiation was investigated in order to assess the potential harmful effects of long-term continuous exposure. The plants were grown in two separate electromagnetic field (EMF) shielded rooms, in a controlled, greenhouse-like environment. One batch was continuously irradiated during the growth period (from sowing to maturity) and the other one was used as a reference. An unmodulated signal at 915 MHz (the central frequency between the uplink and downlink of the GSM900 mobile communications band) was used, with a maximum power density of 10 mW/m2 measured near the plants. The plants were analyzed using ultraviolet-visible, statistical, morphometric, and electron microscopy methods. Significant differences were observed regarding the height of the plants, number of inflorescences, and chlorophyll and carotenoid content, all closely connected with the ultrastructural changes observed in the leaves. The irradiated batch grew higher (19% increase in plant height, 20% increase in stem and leaves' dry mass), with 18% fewer inflorescences, and extremely long roots (34% increase in dry mass). The ultrastructure of the irradiated leaves showed irregular cells and a higher content of plastoglobules in the chloroplasts. All results indicate that the irradiated plants suffered significant morphological modifications during their long-term exposure to the specific EM radiation. Bioelectromagnetics. © 2020 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Vasile Surducan
- National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Cluj-Napoca, Romania
| | - Emanoil Surducan
- National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Cluj-Napoca, Romania
| | - Camelia Neamtu
- National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Cluj-Napoca, Romania
| | - Augustin C Mot
- National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Cluj-Napoca, Romania.,Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Alexandra Ciorîță
- National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Cluj-Napoca, Romania.,Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Pikosz M, Czerwik-Marcinkowska J, Messyasz B. The effect of Cladophora glomerata exudates on the amino acid composition of Cladophora fracta and Rhizoclonium sp. OPEN CHEM 2019. [DOI: 10.1515/chem-2019-0032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractFilamentous green algae (FGA) frequently forms dense mats which can be either mono- or polyspecies. While various defense mechanisms of competition in algae are known, little is known about the interactions between different species of FGA. An experiment in controlled laboratory conditions was conducted to gather data on the changes in amino acids (AA) concentrations in FGA species in the presence of exudates from different other species. The aim of the present study was to identify the AA whose concentrations showed significant changes and to assess if the changes could be adaptation to stress conditions. The major constituents of the AA pool in Cladophora glomerata, C. fracta and Rhizoclonium sp. were Glutamic acid (Glu), Aspartic acid (Asp) and Leucine (Leu). In response to chemical stress, that is the increasing presence of exudates, a significant increase in the concentrations Proline (Pro) and Tryptophan (Trp) was noted. The increase in Proline levels was observed in C. fracta and Rhizoclonium in response to chemical stress induced by C. glomerata exudates. As the concentration of exudates increased in the medium, there was a progressive shift in the pattern of AA group in FGA.
Collapse
Affiliation(s)
- Marta Pikosz
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614Poznań, Poland
| | - Joanna Czerwik-Marcinkowska
- Department of Botany, Institute of Biology, Jan Kochanowski University, Świętokrzyska 15, 25-420Kielce, Poland
| | - Beata Messyasz
- Department of Hydrobiology, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614Poznań, Poland
| |
Collapse
|
7
|
Starch from the sea: The green macroalga Ulva ohnoi as a potential source for sustainable starch production in the marine biorefinery. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.11.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
8
|
Farias DR, Schmidt E, Simioni C, Bouzon ZL, Hurd CL, Eriksen RS, Macleod CK. Photosynthetic and ultrastructural responses of Ulva australis to Zn stress. Micron 2017; 103:45-52. [PMID: 28968548 DOI: 10.1016/j.micron.2017.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/25/2017] [Accepted: 09/25/2017] [Indexed: 10/18/2022]
Abstract
This research evaluated the effect of zinc (Zn) on the ultrastructure and the photosynthetic efficiency of a common green alga. Ulva australis was grown in the laboratory for 7days under a range of different Zn concentrations (0, 25, 50 and 100μgL-1). Growth rate (Gr), photosynthetic efficiency (Fv/Fm and ETRmax), photosynthetic pigments, and metal accumulation were measured. Samples of 1mm length were taken to analyse the effect of Zn on the ultrastructure using transmission electron microscopy (TEM) and cytochemical responses (TB-O and PAS) were evaluated by light microscopy (LM). There were no significant differences in the growth rate, Fv/Fm, ETRmax and the photosynthetic pigments chlorophyll a, chlorophyll b and carotenoids (p>0.05) after 7days of Zn exposure. However, TEM revealed cytoplasm retraction, compression of cellulose fibrils, dissembled thylakoids and electron-dense bodies suggesting ultrastructural impacts from metal exposure and accumulation. Cytological analysis demonstrated that Zn affected U. australis cells at the three concentrations tested. The main effect was cytoplasm retraction and a decrease on the amount of starch granules, following exposure at 25μgL-1 and 50μgL-1 of Zn. We conclude that concentrations of Zn assessed in U. australis in this research has a short-term cellular effect as revealed by TEM and cytological analysis, demonstrating the importance of measuring a broad suite of endpoints to better understand species responses to environmentally relevant concentrations of Zn. However, U. australis was able to physiologically tolerate adverse conditions, since there was no effect on the photosynthetic performance and growth.
Collapse
Affiliation(s)
- D R Farias
- Institute for Marine & Antarctic Studies - Fisheries, Aquaculture & Coasts (IMAS - FAC), University of Tasmania, Nubeena Crescent, Taroona, 7053, Tasmania, Australia.
| | - E Schmidt
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina 88049-900, CP 476, Florianópolis, SC, Brazil
| | - C Simioni
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina 88049-900, CP 476, Florianópolis, SC, Brazil
| | - Z L Bouzon
- Plant Cell Biology Laboratory, Department of Cell Biology, Embryology and Genetics, Federal University of Santa Catarina 88049-900, CP 476, Florianópolis, SC, Brazil
| | - C L Hurd
- Institute for Marine & Antarctic Studies (IMAS), University of Tasmania, 20 Castray Esplanade, Battery Point, Hobart 7004, Tasmania, Australia
| | - R S Eriksen
- Antarctic Climate & Ecosystem CRC Private Bag 80, UTAS, Hobart, 7001, Australia; CSIRO Oceans & Atmosphere, Castray Esplanade Battery Point, Hobart 7004, Australia
| | - C K Macleod
- Institute for Marine & Antarctic Studies - Fisheries, Aquaculture & Coasts (IMAS - FAC), University of Tasmania, Nubeena Crescent, Taroona, 7053, Tasmania, Australia
| |
Collapse
|