1
|
Egerton RF. Two- and three-dimensional electron imaging of beam-sensitive specimens. Micron 2025; 194:103819. [PMID: 40188715 DOI: 10.1016/j.micron.2025.103819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025]
Abstract
Radiation damage is the main factor that determines the spatial resolution of TEM and STEM images of beam-sensitive specimens, its influence being well represented by a dose-limited resolution (DLR). In this review, DLR is defined and evaluated for both thin and thick samples, for all common imaging modes, and for electron-accelerating voltages up to 3 MV. Damage mechanisms are discussed (including beam heating and electrostatic charge accumulation) with an emphasis on recently published work. Experimental methods for reducing beam damage are identified and future lines of investigation are suggested.
Collapse
Affiliation(s)
- R F Egerton
- Physics Department, University of Alberta, Edmonton T6G 2E1, Canada.
| |
Collapse
|
2
|
Mücke D, Cooley I, Liang B, Wang Z, Park S, Dong R, Feng X, Qi H, Besley E, Kaiser U. Understanding the Electron Beam Resilience of Two-Dimensional Conjugated Metal-Organic Frameworks. NANO LETTERS 2024; 24:3014-3020. [PMID: 38427697 PMCID: PMC10941249 DOI: 10.1021/acs.nanolett.3c04125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Knowledge of the atomic structure of layer-stacked two-dimensional conjugated metal-organic frameworks (2D c-MOFs) is an essential prerequisite for establishing their structure-property correlation. For this, atomic resolution imaging is often the method of choice. In this paper, we gain a better understanding of the main properties contributing to the electron beam resilience and the achievable resolution in the high-resolution TEM images of 2D c-MOFs, which include chemical composition, density, and conductivity of the c-MOF structures. As a result, sub-angstrom resolution of 0.95 Å has been achieved for the most stable 2D c-MOF of the considered structures, Cu3(BHT) (BHT = benzenehexathiol), at an accelerating voltage of 80 kV in a spherical and chromatic aberration-corrected TEM. Complex damage mechanisms induced in Cu3(BHT) by the elastic interactions with the e-beam have been explained using detailed ab initio molecular dynamics calculations. Experimental and calculated knock-on damage thresholds are in good agreement.
Collapse
Affiliation(s)
- David Mücke
- Central
Facility for Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
| | - Isabel Cooley
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Baokun Liang
- Central
Facility for Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
| | - Zhiyong Wang
- Max
Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
- Faculty
of Chemistry and Food Chemistry & Center for Advancing Electronics
Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - SangWook Park
- Faculty
of Chemistry and Food Chemistry & Center for Advancing Electronics
Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Renhao Dong
- Faculty
of Chemistry and Food Chemistry & Center for Advancing Electronics
Dresden, Technische Universität Dresden, 01062 Dresden, Germany
- Key
Laboratory of Colloid and Interface Chemistry of the Ministry of Education,
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Xinliang Feng
- Max
Planck Institute of Microstructure Physics, 06120 Halle (Saale), Germany
- Faculty
of Chemistry and Food Chemistry & Center for Advancing Electronics
Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Haoyuan Qi
- Central
Facility for Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
- Faculty
of Chemistry and Food Chemistry & Center for Advancing Electronics
Dresden, Technische Universität Dresden, 01062 Dresden, Germany
| | - Elena Besley
- School
of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - Ute Kaiser
- Central
Facility for Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
| |
Collapse
|