1
|
Padilla D, Acosta Hernández B, Ramos Vivas J, Déniz S, Rosario I, Martín Barrasa JL, Henao AS, Silva Sergent F, Ramos Sosa MJ, García Álvarez N, Real F. Kinetics of the invasion of a non-phagocytic fish cell line, RTG-2 by Yersinia ruckeri serotype O1 biotype 1. Acta Vet Hung 2022. [PMID: 35895532 DOI: 10.1556/004.2022.00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/17/2022] [Indexed: 02/18/2024]
Abstract
Yersiniosis, caused by the fish pathogen Yersinia ruckeri, is a serious bacterial septicaemia affecting mainly salmonids worldwide. The acute infection may result in high mortality without apparent external disease signs, while the chronic one causes moderate to considerable mortality. Survivors of yersiniosis outbreaks become carriers. Y. ruckeri is able to adhere to, and to invade, phagocytic and non-phagocytic fish cells by using unknown molecular mechanisms. The aim of this study was to describe the kinetics of cell invasion by Y. ruckeri serotype O1 biotype 1 in a fish cell line (RTG-2) originating from rainbow trout gonads. The efficiency of invasion by Y. ruckeri was found to be temperature dependent, having a maximum at 20 °C. The bacterium was able to survive up to 96 h postinfection. The incubation of the cells at 4 °C and the pre-incubation of the bacteria with sugars or heat-inactivated antiserum significantly decreased the efficiency of invasion or even completely prevented the invasion of RTG-2 cells. These findings indicate that Y. ruckeri is capable of adhering to, entering and surviving within non-phagocytic cells, and that the intracellular environment may constitute a suitable niche for this pathogen that can favour the spread of infection and/or the maintenance of a carrier state of fish.
Collapse
Affiliation(s)
- Daniel Padilla
- 1 Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), Arucas, 35412, Spain
| | - Begoña Acosta Hernández
- 1 Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), Arucas, 35412, Spain
| | - José Ramos Vivas
- 2 Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Santander, Spain
- 3 Department of Project Management, Universidad Internacional Iberoamericana, Campeche, 24560, Mexico
| | - Soraya Déniz
- 1 Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), Arucas, 35412, Spain
| | - Inmaculada Rosario
- 1 Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), Arucas, 35412, Spain
| | - José Luís Martín Barrasa
- 1 Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), Arucas, 35412, Spain
- 4 Experimental Animal Facility, Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Andrés Sánchez Henao
- 1 Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), Arucas, 35412, Spain
| | - Freddy Silva Sergent
- 1 Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), Arucas, 35412, Spain
| | - María José Ramos Sosa
- 1 Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), Arucas, 35412, Spain
| | - Natalia García Álvarez
- 1 Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), Arucas, 35412, Spain
| | - Fernando Real
- 1 Instituto Universitario de Sanidad Animal y Seguridad Alimentaria (IUSA), Universidad de Las Palmas de Gran Canaria (ULPGC), Arucas, 35412, Spain
| |
Collapse
|
2
|
Plavec TV, Mitrović A, Perišić Nanut M, Štrukelj B, Kos J, Berlec A. Targeting of fluorescent Lactococcus lactis to colorectal cancer cells through surface display of tumour-antigen binding proteins. Microb Biotechnol 2021; 14:2227-2240. [PMID: 34347360 PMCID: PMC8449671 DOI: 10.1111/1751-7915.13907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
Development of targeted treatment for colorectal cancer is crucial to avoid side effects. To harness the possibilities offered by microbiome engineering, we prepared safe multifunctional cancer cell-targeting bacteria Lactococcus lactis. They displayed, on their surface, binding proteins for cancer-associated transmembrane receptors epithelial cell adhesion molecule (EpCAM) and human epidermal growth factor receptor 2 (HER2) and co-expressed an infrared fluorescent protein for imaging. Binding of engineered L. lactis to tumour antigens EpCAM and HER2 was confirmed and characterised in vitro using soluble receptors. The proof-of-principle of targeting was demonstrated on human cell lines HEK293, HT-29 and Caco-2 with fluorescent microscopy and flow cytometry. The highest L. lactis adhesion was seen for the HEK293 cells with the overexpressed tumour antigens, where colocalisation with their tumour antigens was seen for 39% and 67% of EpCAM-targeting and HER2-targeting bacteria, respectively. On the other hand, no binding was observed to HEK293 cells without tumour antigens, confirming the selectivity of the engineered L. lactis. Apart from cell targeting in static conditions, targeting ability of engineered L. lactis was also shown in conditions of constant flow of bacterial suspension over the HEK293 cells. Successful targeting by engineered L. lactis support the future use of these bacteria in biopharmaceutical delivery for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Tina Vida Plavec
- Department of BiotechnologyJožef Stefan InstituteJamova 39LjubljanaSlovenia
- Faculty of PharmacyUniversity of LjubljanaAškerčeva 7LjubljanaSlovenia
| | - Ana Mitrović
- Department of BiotechnologyJožef Stefan InstituteJamova 39LjubljanaSlovenia
| | | | - Borut Štrukelj
- Department of BiotechnologyJožef Stefan InstituteJamova 39LjubljanaSlovenia
- Faculty of PharmacyUniversity of LjubljanaAškerčeva 7LjubljanaSlovenia
| | - Janko Kos
- Department of BiotechnologyJožef Stefan InstituteJamova 39LjubljanaSlovenia
- Faculty of PharmacyUniversity of LjubljanaAškerčeva 7LjubljanaSlovenia
| | - Aleš Berlec
- Department of BiotechnologyJožef Stefan InstituteJamova 39LjubljanaSlovenia
- Faculty of PharmacyUniversity of LjubljanaAškerčeva 7LjubljanaSlovenia
| |
Collapse
|
3
|
Sarshar M, Scribano D, Tranquilli G, Di Pietro M, Filardo S, Zagaglia C, Sessa R, Palamara AT, Ambrosi C. A simple, fast and reliable scan-based technique as a novel approach to quantify intracellular bacteria. BMC Microbiol 2019; 19:252. [PMID: 31718545 PMCID: PMC6849193 DOI: 10.1186/s12866-019-1625-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/24/2019] [Indexed: 12/31/2022] Open
Abstract
Background Quantification of intracellular bacteria is fundamental in many areas of cellular and clinical microbiology to study acute and chronic infections. Therefore, rapid, accurate and low-cost methods represent valuable tools in determining bacterial ability to persist and proliferate within eukaryotic cells. Results Herein, we present the first application of the immunofluorescence In-Cell Western (ICW) assay aimed at quantifying intracellular bacteria in in vitro infection models. The performance of this new approach was evaluated in cell culture infection models using three microorganisms with different lifestyles. Two facultative intracellular bacteria, the fast-growing Shigella flexneri and a persistent strain of Escherichia coli, as well as the obligate intracellular bacterium Chlamydia trachomatis were chosen as bacterial models. The ICW assay was performed in parallel with conventional quantification methods, i.e. colony forming units (CFUs) and inclusion forming units (IFUs). The fluorescence signal intensity values from the ICW assay were highly correlated to CFU/IFUs counting and showed coefficients of determination (R2), ranging from 0,92 to 0,99. Conclusions The ICW assay offers several advantages including sensitivity, reproducibility, high speed, operator-independent data acquisition and overtime stability of fluorescence signals. All these features, together with the simplicity in performance, make this assay particularly suitable for high-throughput screening and diagnostic approaches.
Collapse
Affiliation(s)
- Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, 00185, Rome, Italy.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy.,Dani Di Giò Foundation-Onlus, Rome, Italy
| | - Giulia Tranquilli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Marisa Di Pietro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Rosa Sessa
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, 00185, Rome, Italy.,IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy
| | - Cecilia Ambrosi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185, Rome, Italy. .,IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166, Rome, Italy.
| |
Collapse
|
4
|
Sanahuja I, Fernández-Alacid L, Sánchez-Nuño S, Ordóñez-Grande B, Ibarz A. Chronic Cold Stress Alters the Skin Mucus Interactome in a Temperate Fish Model. Front Physiol 2019; 9:1916. [PMID: 30687126 PMCID: PMC6336924 DOI: 10.3389/fphys.2018.01916] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/18/2018] [Indexed: 01/01/2023] Open
Abstract
Temperate fish are particularly sensitive to low temperatures, especially in the northern Mediterranean area, where the cold season decreases fish-farm production and affects fish health. Recent studies have suggested that the skin mucus participates in overall fish defense and welfare, and therefore propose it as a target for non-invasive studies of fish status. Here, we determine the mucus interactome of differentially expressed proteins in a temperate fish model, gilthead sea bream (Sparus aurata), after chronic exposure to low temperatures (7 weeks at 14°C). The differentially expressed proteins were obtained by 2D-PAGE of mucus soluble proteins and further assessed by STRING analyses of the functional interactome based on protein-protein interactions. Complementarily, we determined mucus metabolites, glucose, and protein, as well as enzymes involved in innate defense mechanisms, such as total protease and esterase. The cold mucus interactome revealed the presence of several subsets of proteins corresponding to Gene Ontology groups. "Response to stress" formed the central core of the cold interactome, with up-regulation of proteins, such as heat shock proteins (HSPs) and transferrin; and down-regulation of proteins with metabolic activity. In accordance with the low temperatures, all proteins clustered in the "Single-organism metabolic process" group were down-regulated in response to cold, evidencing depressed skin metabolism. An interactome subset of "Interspecies interaction between species" grouped together several up-regulated mucus proteins that participate in bacterial adhesion, colonization, and entry, such as HSP70, lectin-2, ribosomal proteins, and cytokeratin-8, septin, and plakins. Furthermore, cold mucus showed lower levels of soluble glucose and no adaptation response in total protease or esterase activity. Using zymography, we detected the up-regulation of metalloprotease-like activity, together with a number of fragments or cleaved keratin forms which may present antimicrobial activity. All these results evidence a partial loss of mucus functionality under chronic exposure to low temperatures which would affect fish welfare during the natural cold season under farm conditions.
Collapse
Affiliation(s)
| | | | | | | | - Antoni Ibarz
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Hoffmann S, Walter S, Blume AK, Fuchs S, Schmidt C, Scholz A, Gerlach RG. High-Throughput Quantification of Bacterial-Cell Interactions Using Virtual Colony Counts. Front Cell Infect Microbiol 2018; 8:43. [PMID: 29497603 PMCID: PMC5818393 DOI: 10.3389/fcimb.2018.00043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/31/2018] [Indexed: 11/13/2022] Open
Abstract
The quantification of bacteria in cell culture infection models is of paramount importance for the characterization of host-pathogen interactions and pathogenicity factors involved. The standard to enumerate bacteria in these assays is plating of a dilution series on solid agar and counting of the resulting colony forming units (CFU). In contrast, the virtual colony count (VCC) method is a high-throughput compatible alternative with minimized manual input. Based on the recording of quantitative growth kinetics, VCC relates the time to reach a given absorbance threshold to the initial cell count using a series of calibration curves. Here, we adapted the VCC method using the model organism Salmonella enterica sv. Typhimurium (S. Typhimurium) in combination with established cell culture-based infection models. For HeLa infections, a direct side-by-side comparison showed a good correlation of VCC with CFU counting after plating. For MDCK cells and RAW macrophages we found that VCC reproduced the expected phenotypes of different S. Typhimurium mutants. Furthermore, we demonstrated the use of VCC to test the inhibition of Salmonella invasion by the probiotic E. coli strain Nissle 1917. Taken together, VCC provides a flexible, label-free, automation-compatible methodology to quantify bacteria in in vitro infection assays.
Collapse
Affiliation(s)
| | - Steffi Walter
- Project Group 5, Robert Koch Institute, Wernigerode, Germany
| | - Anne-Kathrin Blume
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Stephan Fuchs
- Division 13: Nosocomial Pathogens and Antibiotic Resistances, Robert Koch Institute, Wernigerode, Germany
| | | | | | | |
Collapse
|
6
|
Lin G, Chen W, Su Y, Qin Y, Huang L, Yan Q. Ribose operon repressor (RbsR) contributes to the adhesion of Aeromonas hydrophila to Anguilla japonica mucus. Microbiologyopen 2017; 6. [PMID: 28127946 PMCID: PMC5552941 DOI: 10.1002/mbo3.451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/19/2016] [Accepted: 12/29/2016] [Indexed: 12/12/2022] Open
Abstract
The characterization of adhesion between pathogenic bacteria and the host is critical. Pathogenic Aeromonas hydrophila was shown to adhere in vitro to the mucus of Anguilla japonica. To further investigate the adhesion mechanisms of A. hydrophila, a mini-Tn10 transposon mutagenesis system was used to generate an insertion mutant library by cell conjugation. Seven mutants that were impaired in adhesion to mucus were selected out of 332 individual colonies, and mutant M196 was the most severely impaired strain. National Center for Biotechnology Information (NCBI) blast analysis showed that mutant M196 was inserted by mini-Tn10 with an ORF of approximately 1,005 bp (GenBank accession numbers KP280172). This ORF is predicted to encode a protein consist of 334 amino acid, which displays the highest identity (98%) with the RbsR of A. hydrophila ATCC 7966. Random inactivation of rbsR gene affected the pleiotropic phenotypes of A. hydrophila. The adhesion ability and the survival level of the rbsR gene mutant (M196) were attenuated compared with the wild-type and rbsR complementary type. The findings of this study indicated that RbsR plays roles in the bacterial adhesion and intracellular survival of A. hydrophila.
Collapse
Affiliation(s)
- Guifang Lin
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Wenbo Chen
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Yongquan Su
- College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Lixing Huang
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Qingpi Yan
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,Key Laboratory of Healthy Mariculture for the East China Sea, Fisheries College, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| |
Collapse
|
7
|
McEvoy K, Hayes J, Kealey C, Brady D. Influence of sweet whey protein concentrate and its hydrolysates on host-pathogen interactions in the emerging foodborne pathogen Cronobacter sakazakii. J Appl Microbiol 2016; 121:873-82. [PMID: 27337492 DOI: 10.1111/jam.13212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 11/30/2022]
Abstract
AIMS Antimicrobial resistance poses a significant global healthcare predicament. An attractive approach to the dilemma of drug-resistant bacteria is the development and use of agents that interfere with the ability of pathogens to adhere to human tissue. The influence of sweet whey protein concentrate (SWPC), and selected hydrolysates of this material, on host-pathogen interactions of Cronobacter sakazakii (ATCC 29544) was investigated. METHODS AND RESULTS CaCo-2 cell line was selected as a suitable model for the human intestinal epithelium. Cronobacter sakazakiiATCC 29544 was identified as the strain with the highest adhesion efficiency. SWPC reduced its association by 80% (P < 0·01), invasion 35% (P < 0·01), and translocation >95% (P < 0·001). SWPC enzymatically modified with lipase, trypsin and pepsin had variable effects on these behaviours with the most significant effect exhibited with the lipase treatment. SWPC produced an almost total inhibition of translocation of C. sakazakii across a CaCo-2 cell monolayer. Lipase and pepsin treated SWPC also reduced translocation by 75% and 90% respectively. However, trypsin treatment nullified the effect SWPC had on translocation. The presence of viable bacterial cells and SWPC both increased expression of IL-8 following Cronobacter invasion into CaCo-2 cells. CONCLUSIONS Factors governing adherence, invasion and translocation of Cronobacter spp. to human intestinal cells are multi-factorial and digested milk products exhibit varying effects dependant on their enzyme modification and protein lipid content. SIGNIFICANCE AND IMPACT OF THE STUDY These findings contribute to our, as yet, incomplete understanding of Cronobacter pathogenesis, and suggest that SWPC in whole and enzymatically hydrolysed forms, may provide a cost-effective source of bioactive materials with inhibitory effects on bacterial virulence.
Collapse
Affiliation(s)
- K McEvoy
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland.,Department of Life and Physical Sciences, Faculty of Science and Health, Athlone Institute of Technology, Athlone, Ireland
| | - J Hayes
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - C Kealey
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland.,Department of Life and Physical Sciences, Faculty of Science and Health, Athlone Institute of Technology, Athlone, Ireland
| | - D Brady
- Bioscience Research Institute, Athlone Institute of Technology, Athlone, Ireland.,Department of Life and Physical Sciences, Faculty of Science and Health, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
8
|
Wang L, Huang L, Su Y, Qin Y, Kong W, Ma Y, Xu X, Lin M, Zheng J, Yan Q. Involvement of the flagellar assembly pathway in Vibrio alginolyticus adhesion under environmental stresses. Front Cell Infect Microbiol 2015; 5:59. [PMID: 26322276 PMCID: PMC4533019 DOI: 10.3389/fcimb.2015.00059] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/30/2015] [Indexed: 11/13/2022] Open
Abstract
Adhesion is an important virulence factor of Vibrio alginolyticus. This factor may be affected by environmental conditions; however, its molecular mechanism remains unclear. In our previous research, adhesion deficient strains were obtained by culturing V. alginolyticus under stresses including Cu, Pb, Hg, and low pH. With RNA-seq and bioinformatics analysis, we found that all of these stress treatments significantly affected the flagellar assembly pathway, which may play an important role in V. alginolyticus adhesion. Therefore, we hypothesized that the environmental stresses of the flagellar assembly pathway may be one way in which environmental conditions affect adhesion. To verify our hypothesis, a bioinformatics analysis, QPCR, RNAi, in vitro adhesion assay and motility assay were performed. Our results indicated that (1) the flagellar assembly pathway was sensitive to environmental stresses, (2) the flagellar assembly pathway played an important role in V. alginolyticus adhesion, and (3) motility is not the only way in which the flagellar assembly pathway affects adhesion.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Lixing Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Yongquan Su
- College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
| | - Yingxue Qin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Wendi Kong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Ying Ma
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Xiaojin Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Mao Lin
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Jiang Zheng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| | - Qingpi Yan
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Fisheries College, Jimei UniversityXiamen, China
| |
Collapse
|
9
|
Benhamed S, Guardiola FA, Mars M, Esteban MÁ. Pathogen bacteria adhesion to skin mucus of fishes. Vet Microbiol 2014; 171:1-12. [DOI: 10.1016/j.vetmic.2014.03.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 12/17/2013] [Accepted: 03/03/2014] [Indexed: 10/25/2022]
|
10
|
Ye L, Zheng X, Zheng H. Effect of sypQ gene on poly-N-acetylglucosamine biosynthesis in Vibrio parahaemolyticus and its role in infection process. Glycobiology 2014; 24:351-8. [DOI: 10.1093/glycob/cwu001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
11
|
Denman CC, Brown AR. Mannitol promotes adherence of an outbreak strain of Burkholderia multivorans via an exopolysaccharide-independent mechanism that is associated with upregulation of newly identified fimbrial and afimbrial adhesins. MICROBIOLOGY-SGM 2013; 159:771-781. [PMID: 23378576 DOI: 10.1099/mic.0.064832-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia multivorans, a member of the Burkholderia cepacia complex (Bcc), is an important pathogen of the cystic fibrosis (CF) lung. Mannitol, approved as an inhaled osmolyte therapy for use in CF patients, promotes exopolysaccharide (EPS) production by the Bcc. In the present study, we investigated the role of mannitol-induced EPS in the adherence of B. multivorans. We report that mannitol promoted adherence of two representative B. multivorans strains. However, whilst this enhanced adherence was largely EPS-dependent in an environmental isolate, it was EPS-independent within a CF outbreak strain, suggesting strain-to-strain variation in adhesins. Genome sequencing of the outbreak strain enabled the identification of two distinct loci encoding putative fimbrial and afimbrial adhesins. The putative fimbriae-encoding locus was found to be widely distributed amongst clinical and environmental B. multivorans. In contrast, the locus encoding the putative afimbrial adhesin (of the filamentous haemagglutinin family, FHA) was restricted to clinical isolates. Both loci contributed to biofilm formation and mucin adherence. Furthermore, we report that mannitol promoted expression of both loci, and that the locus encoding the putative FHA-family adhesin is a key determinant of the enhanced adherence observed following growth in mannitol. Our studies provide the first characterization, to our knowledge, of B. multivorans adhesins, and in so doing highlight the strain-dependent role of EPS in the Bcc and the difficulties in assigning phenotypic traits to Bcc EPS due to the wider response to mannitol. Our observations also highlight the need to monitor the microbiological effects of inhaled mannitol therapy in Bcc-infected CF patients.
Collapse
Affiliation(s)
- Carmen C Denman
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Alan R Brown
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| |
Collapse
|
12
|
El Aamri F, Real F, Acosta F, Acosta B, Valdivia J, Ramos-Vivas J, Padilla D. In vitro study of adherence, invasion, and persistence of Streptococcus iniae in fibroblastic-like fish cell line SAF-1. JOURNAL OF AQUATIC ANIMAL HEALTH 2012; 24:165-170. [PMID: 22897319 DOI: 10.1080/08997659.2012.675928] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Streptococcus iniae is a major fish pathogen producing invasive infections that result in economic losses in aquaculture. Gentamicin protection assays were used to investigate the ability of different S. iniae strains to invade and adhere to fibroblastic-like fish cell line SAF-1. All strains tested were detected intracellularly using both techniques, with variable internalization degrees between strains. The experiments carried out at 4°C demonstrated that active cell metabolism is necessary for bacterial internalization. Intracellular bacteria were detected for up to 3 d with a round morphology and were stained with 4',6-diamidino-2-phenylindole (DAPI), indicating that some bacterial cells may remain viable inside SAF-1 cells. Our in vitro findings indicate that S. iniae is capable of adhering, entering, and surviving within fibroblastic cells, which may be important for the persistence and establishment of a carrier state.
Collapse
Affiliation(s)
- F El Aamri
- University of Las Palmas de Gran Canaria, Arucas, Las Palmas, Spain
| | | | | | | | | | | | | |
Collapse
|
13
|
Halpin R, Brady D, OâRiordan E, OâSullivan M. Untreated and enzyme-modified bovine whey products reduce association ofSalmonellaTyphimurium,Escherichia coliO157:H7 andCronobacter malonaticus(formerlyEnterobacter sakazakii) to CaCo-2 cells. J Appl Microbiol 2010; 108:406-15. [DOI: 10.1111/j.1365-2672.2009.04436.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
McEwan NA, Rème CA, Gatto H, Nuttall TJ. Monosaccharide inhibition of adherence by Pseudomonas aeruginosa to canine corneocytes. Vet Dermatol 2009; 19:221-5. [PMID: 19086121 DOI: 10.1111/j.1365-3164.2008.00678.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of D-galactose, D-mannose, L-rhamnose and dextrose on the adhesion to canine corneocytes by three strains of Pseudomonas aeruginosa was studied in six healthy dogs. Canine corneocytes were collected from the inner aspect of the pinna using adhesive discs (D-Squame). Half millimetre of bacterial suspension in phosphate-buffered saline (PBS) with or without the addition of a monosaccharide was placed over the corneocyte layer and incubated in moist chambers. Image analysis was used to quantify bacterial adherence to corneocytes. The three strains of Pseudomonas adhered well to canine corneocytes. All monosaccharides tested inhibited the adherence of Pseudomonas to canine corneocytes. The mean reduction in adhesion for individual sugars at a concentration of 0.1% was 40.2% (dextrose), 30.8% (L-rhamnose), 25.6% (D-galactose) and 19.4% (D-mannose). When D-galactose, D-mannose and L-rhamnose were used in combination at 0.1% concentration, the mean reduction in adherence was 52.9%. The monosaccharides studied may have a potential role in the management of Pseudomonas infections in dogs.
Collapse
Affiliation(s)
- Neil A McEwan
- Faculty of Veterinary Science, Small Animal Teaching Hospital, The University of Liverpool, Leahurst, Chester High Road, Neston, Wirral CH64 7TE, UK.
| | | | | | | |
Collapse
|
15
|
Sanz ML, Martínez-Castro I. Recent developments in sample preparation for chromatographic analysis of carbohydrates. J Chromatogr A 2007; 1153:74-89. [PMID: 17257608 DOI: 10.1016/j.chroma.2007.01.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Revised: 12/11/2006] [Accepted: 01/08/2007] [Indexed: 11/17/2022]
Abstract
Carbohydrates are a very important group of compounds due to their roles as structural materials, sources of energy, biological functions and environmental analytes; they are characterized by their structural diversity and the high number of isomers they present. While many advances have been made in carbohydrate analysis, the sample preparation remains difficult. This review aims to summarize the most important treatments which have been recently developed to be applied prior to the analysis of carbohydrates by chromatographic techniques. Due to the multiplicity of structures and matrices, many different techniques are required for clean-up, fractionation and derivatization. A number of new techniques which could be potentially adequate for carbohydrate characterization have also been revised.
Collapse
Affiliation(s)
- M L Sanz
- Instituto de Química Orgánica General, Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva, 3 E-28006 Madrid, Spain
| | | |
Collapse
|