1
|
Graziosi S, Deloche L, Januario M, Selosse MA, Deveau A, Bach C, Chen Z, Murat C, Iotti M, Rech P, Zambonelli A. Newly Designed Fluorescence In Situ Hybridization Probes Reveal Previously Unknown Endophytic Abilities of Tuber magnatum in Herbaceous Plants. MICROBIAL ECOLOGY 2025; 88:42. [PMID: 40338317 PMCID: PMC12062114 DOI: 10.1007/s00248-025-02542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 04/28/2025] [Indexed: 05/09/2025]
Abstract
Tuber magnatum Picco (the Italian white truffle) is the most valuable and widely appreciated truffle. It is an ectomycorrhizal fungus known to associate with many broadleaf tree species. However, its mycorrhizae are rarely observed in the field, suggesting possible alternative symbiotic strategies, such as endophytism with non-ectomycorrhizal plants. In order to test potential endophytic interactions of T. magnatum with wild plants, a combination of polymerase chain reaction (PCR) and Fluorescence In Situ Hybridization (FISH) approaches were used. Specific FISH probes for T. magnatum were designed, tested in vitro on hyphae and/or ectomycorrhizae, and selected for their specificity. These probes were then used on a wide variety root samples of wild plants collected from three T. magnatum production areas in Italy and previously tested for the presence of T. magnatum mycelium using PCR-specific primers. Molecular analyses detected the presence of T. magnatum in 21 of 100 plant samples analyzed. FISH analysis confirmed the extracellular presence of active T. magnatum hyphae inside the root system of Carex pendula Huds plant. This study provides the first evidence of T. magnatum acting as an endophyte in an herbaceous plant. The newly designed, highly specific T. magnatum FISH probes can be used for further investigations to confirm the endophytic tendencies of T. magnatum and to understand their influence on the life cycle and biology of this fungus.
Collapse
Grants
- K272X8 - CUP J53D23010090006 European Union - NextGenerationEU under the National Recovery and Resilience Plan (PNRR) - Mission 4 Education and research - Component 2 From research to business - Investment 1.1 Notice Prin 2022 - DD N. 104 del 2/2/2022, from title "Interactions of the white truffle Tuber magnatum with soil microbiome and plants"
- K272X8 - CUP J53D23010090006 European Union - NextGenerationEU under the National Recovery and Resilience Plan (PNRR) - Mission 4 Education and research - Component 2 From research to business - Investment 1.1 Notice Prin 2022 - DD N. 104 del 2/2/2022, from title "Interactions of the white truffle Tuber magnatum with soil microbiome and plants"
- ANR-11-LABX-0002-01 The French National Research Agency (ANR), 'Investissements d'Avenir' program, Lab of Excellence ARBRE, UMR IaM.
- ANR-11-LABX-0002-01 The French National Research Agency (ANR), 'Investissements d'Avenir' program, Lab of Excellence ARBRE, UMR IaM.
- ANR-11-LABX-0002-01 The French National Research Agency (ANR), 'Investissements d'Avenir' program, Lab of Excellence ARBRE, UMR IaM.
- ANR-11-LABX-0002-01 The French National Research Agency (ANR), 'Investissements d'Avenir' program, Lab of Excellence ARBRE, UMR IaM.
- European Union - NextGenerationEU under the National Recovery and Resilience Plan (PNRR) - Mission 4 Education and research - Component 2 From research to business - Investment 1.1 Notice Prin 2022 - DD N. 104 del 2/2/2022, from title “Interactions of the white truffle Tuber magnatum with soil microbiome and plants”
- PON call “Research and Innovation 2014–2020”
- Institut Universitaire de France
- The French National Research Agency (ANR), ‘Investissements d’Avenir’ program, Lab of Excellence ARBRE, UMR IaM.
- Alma Mater Studiorum - Università di Bologna
Collapse
Affiliation(s)
- Simone Graziosi
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy.
| | - Lara Deloche
- ISYEB, Muséum National d'Histoire Naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 Rue Cuvier, CP39, 75005, Paris, France
| | - Mélanie Januario
- ISYEB, Muséum National d'Histoire Naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 Rue Cuvier, CP39, 75005, Paris, France
| | - Marc-André Selosse
- ISYEB, Muséum National d'Histoire Naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 Rue Cuvier, CP39, 75005, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Ul. Wita Stwosza 59, 80-308, Gdańsk, Poland
- Institut Universitaire de France, Paris, France
| | - Aurélie Deveau
- Université de Lorraine, INRAE, 54000, Nancy, IAM, France
| | - Cyrille Bach
- Université de Lorraine, INRAE, 54000, Nancy, IAM, France
| | - Zhixiao Chen
- Université de Lorraine, INRAE, 54000, Nancy, IAM, France
| | - Claude Murat
- Université de Lorraine, INRAE, 54000, Nancy, IAM, France
| | - Mirco Iotti
- Department of Life, Health and Environmental Science, University of L'Aquila, Via Vetoio, 67100, Coppito, L'Aquila, Italy
| | - Philippe Rech
- ISYEB, Muséum National d'Histoire Naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 Rue Cuvier, CP39, 75005, Paris, France.
| | - Alessandra Zambonelli
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| |
Collapse
|
2
|
Imran A, Sardar F, Khaliq Z, Nawaz MS, Shehzad A, Ahmad M, Yasmin S, Hakim S, Mirza BS, Mubeen F, Mirza MS. Tailored Bioactive Compost from Agri-Waste Improves the Growth and Yield of Chili Pepper and Tomato. Front Bioeng Biotechnol 2022; 9:787764. [PMID: 35141214 PMCID: PMC8819593 DOI: 10.3389/fbioe.2021.787764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
An extensive use of chemical fertilizers has posed a serious impact on food and environmental quality and sustainability. As the organic and biofertilizers can satisfactorily fulfill the crop’s nutritional requirement, the plants require less chemical fertilizer application; hence, the food is low in chemical residues and environment is less polluted. The agriculture crop residues, being a rich source of nutrients, can be used to feed the soil and crops after composting and is a practicable approach to sustainable waste management and organic agriculture instead of open-field burning of crop residues. This study demonstrates a feasible strategy to convert the wheat and rice plant residues into composted organic fertilizer and subsequent enrichment with plant-beneficial bacteria. The bioactive compost was then tested in a series of in vitro and in vivo experiments for validating its role in growing organic vegetables. The compost was enriched with a blend of micronutrients, such as zinc, magnesium, and iron, and a multi-trait bacterial consortium AAP (Azospirillum, Arthrobacter, and Pseudomonas spp.). The bacterial consortium AAP showed survival up to 180 days post-inoculation while maintaining their PGP traits. Field emission scanning electron microscopic analysis and fluorescence in situ hybridization (FISH) of bioactive compost further elaborated the morphology and confirmed the PGPR survival and distribution. Plant inoculation of this bioactive compost showed significant improvement in the growth and yield of chilies and tomato without any additional chemical fertilizer yielding a high value to cost ratio. An increase of ≈35% in chlorophyll contents, ≈25% in biomass, and ≈75% in yield was observed in chilies and tomatoes. The increase in N was 18.7 and 25%, while in P contents were 18.5 and 19% in chilies and tomatoes, respectively. The application of bioactive compost significantly stimulated the bacterial population as well as the phosphatase and dehydrogenase activities of soil. These results suggest that bioactive compost can serve as a source of bioorganic fertilizer to get maximum benefits regarding vegetable yield, soil quality, and fertilizer saving with the anticipated application for other food crops. It is a possible win-win situation for environmental sustainability and food security.
Collapse
Affiliation(s)
- Asma Imran
- Soil and Environmental Biotechnology Department, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- *Correspondence: Asma Imran,
| | - Fozia Sardar
- Soil and Environmental Biotechnology Department, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Zabish Khaliq
- Soil and Environmental Biotechnology Department, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Shoib Nawaz
- Soil and Environmental Biotechnology Department, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Atif Shehzad
- Soil and Environmental Biotechnology Department, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Ahmad
- Soil and Environmental Biotechnology Department, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Sumera Yasmin
- Soil and Environmental Biotechnology Department, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Sughra Hakim
- Soil and Environmental Biotechnology Department, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Babur S. Mirza
- Department of Biology, Missouri State University, Springfield, MO, United States
| | - Fathia Mubeen
- Soil and Environmental Biotechnology Department, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Sajjad Mirza
- Soil and Environmental Biotechnology Department, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| |
Collapse
|
3
|
Li W, Li X. Metagenome-assembled genomes infer potential microbial metabolism in alkaline sulphidic tailings. ENVIRONMENTAL MICROBIOME 2021; 16:9. [PMID: 33926573 PMCID: PMC8086273 DOI: 10.1186/s40793-021-00380-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/17/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Mine tailings are hostile environment. It has been well documented that several microbes can inhabit such environment, and metagenomic reconstruction has successfully pinpointed their activities and community structure in acidic tailings environments. We still know little about the microbial metabolic capacities of alkaline sulphidic environment where microbial processes are critically important for the revegetation. Microbial communities therein may not only provide soil functions, but also ameliorate the environment stresses for plants' survival. RESULTS In this study, we detected a considerable amount of viable bacterial and archaeal cells using fluorescent in situ hybridization in alkaline sulphidic tailings from Mt Isa, Queensland. By taking advantage of high-throughput sequencing and up-to-date metagenomic binning technology, we reconstructed the microbial community structure and potential coupled iron and nitrogen metabolism pathways in the tailings. Assembly of 10 metagenome-assembled genomes (MAGs), with 5 nearly complete, was achieved. From this, detailed insights into the community metabolic capabilities was derived. Dominant microbial species were seen to possess powerful resistance systems for osmotic, metal and oxidative stresses. Additionally, these community members had metabolic capabilities for sulphide oxidation, for causing increased salinity and metal release, and for leading to N depletion. CONCLUSIONS Here our results show that a considerable amount of microbial cells inhabit the mine tailings, who possess a variety of genes for stress response. Metabolic reconstruction infers that the microbial consortia may actively accelerate the sulphide weathering and N depletion therein.
Collapse
Affiliation(s)
- Wenjun Li
- Hebei Key Laboratory of Soil Ecology, Key Laboratory for Agricultural Water Resource, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Key Laboratory for Agricultural Water Resource, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050021, China.
| |
Collapse
|
4
|
Sharafat I, Saeed DK, Yasmin S, Imran A, Zafar Z, Hameed A, Ali N. Interactive effect of trivalent iron on activated sludge digestion and biofilm structure in attached growth reactor of waste tire rubber. ENVIRONMENTAL TECHNOLOGY 2018; 39:130-143. [PMID: 28278106 DOI: 10.1080/09593330.2017.1296894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
Waste tire rubber (WTR) has been introduced as an alternative, novel media for biofilm development in several experimental systems including attached growth bioreactors. In this context, four laboratory-scale static batch bioreactors containing WTR as a support material for biofilm development were run under anoxic condition for 90 days using waste activated sludge as an inoculum under the influence of different concentrations (2.5, 6.5, 8.5 mg/l) of trivalent ferric iron (Fe3+). The data revealed that activated sludge with a Fe3+ concentration of 8.5 mg/l supported the maximum bacterial biomass [4.73E + 10 CFU/ml cm2]; besides, it removed 38% more Chemical oxygen demand compared to Fe3+ free condition from the reactor. Biochemical testing and 16S rDNA phylogenetic analysis of WTR-derived biofilm communities further suggested the role of varying concentrations of Fe3+ on the density and diversity of members of Enterobacteria(ceae), ammonium (AOB) and nitrite oxidizing bacteria. Furthermore, Fluorescent in situ hybridization with phylogenetic oligonucleotide probes and confocal laser scanning microscopy of WTR biofilms indicated a significant increase in density of eubacteria (3.00E + 01 to.05E + 02 cells/cm2) and beta proteobacteria (8.10E + 01 to 1.42E + 02 cells/cm2), respectively, with an increase in Fe3+ concentration in the reactors, whereas, the cell density of gamma proteobacteria in biofilms decreased.
Collapse
Affiliation(s)
- Iqra Sharafat
- a Department of Microbiology , Quaid-i-Azam University Islamabad , Pakistan
| | - Dania Khalid Saeed
- a Department of Microbiology , Quaid-i-Azam University Islamabad , Pakistan
| | - Sumera Yasmin
- b National Institute for Biotechnology and Genetic Engineering (NIBGE) , Faisalabad , Pakistan
| | - Asma Imran
- b National Institute for Biotechnology and Genetic Engineering (NIBGE) , Faisalabad , Pakistan
| | - Zargona Zafar
- a Department of Microbiology , Quaid-i-Azam University Islamabad , Pakistan
| | - Abdul Hameed
- a Department of Microbiology , Quaid-i-Azam University Islamabad , Pakistan
| | - Naeem Ali
- a Department of Microbiology , Quaid-i-Azam University Islamabad , Pakistan
| |
Collapse
|
5
|
Sheng H, Harir M, Boughner LA, Jiang X, Schmitt-Kopplin P, Schroll R, Wang F. N-acyl-homoserine lactone dynamics during biofilm formation of a 1,2,4-trichlorobenzene mineralizing community on clay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:1031-1038. [PMID: 28697551 DOI: 10.1016/j.scitotenv.2017.06.233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/25/2017] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
In Gram-negative bacteria, quorum sensing systems are based on the N-acyl-homoserine lactone (AHL) molecule. The objective of this study was to investigate the role of quorum sensing systems during biofilm formation by a microbial community while degrading the pollutant. Our model system included 1,2,4-trichlorobenzene (1,2,4-TCB) and its mineralizing Gram-negative bacterial community to investigate the relationships between AHL dynamics, cell growth and pollutant degradation. Biomineralization of 1,2,4-TCB was monitored for both the planktonic bacterial community with and without sterile clay particles in liquid cultures. The bacterial growth and production of AHLs were quantified by fluorescent in situ hybridization and immunoassay analysis, respectively. A rapid production of AHLs which occurred coincided with the biofilm formation and the increase of mineralization rate of 1,2,4-TCB in liquid cultures. There is a positive correlation between the cell density of Bodertella on the clay particles and mineralization rate of 1,2,4-TCB. 3-oxo-C12:1-HSL appears to be the dominant AHL with the highest intensity and rapidly degraded by the bacterial community via two main consecutive reactions (lactone hydrolysis and decarboxylic reaction). These findings suggest that the integrated AHLs and their degraded products play a crucial role in biofilm formation and biomineralization of 1,2,4-TCB in culture.
Collapse
Affiliation(s)
- Hongjie Sheng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Mourad Harir
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technische Universität München, D-85354 Freising-Weihenstephan, Germany
| | - Lisa A Boughner
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum München, German Research Center for Environmental Health, Research Unit Analytical BioGeoChemistry, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technische Universität München, D-85354 Freising-Weihenstephan, Germany
| | - Reiner Schroll
- Department of Microbe Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Department of Microbe Plant Interactions, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Yoo K, Lee TK, Choi EJ, Yang J, Shukla SK, Hwang SI, Park J. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. J Environ Sci (China) 2017; 51:234-247. [PMID: 28115135 DOI: 10.1016/j.jes.2016.07.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/04/2016] [Accepted: 07/08/2016] [Indexed: 05/21/2023]
Abstract
Bioaerosols significantly affect atmospheric processes while they undergo long-range vertical and horizontal transport and influence atmospheric chemistry and physics and climate change. Accumulating evidence suggests that exposure to bioaerosols may cause adverse health effects, including severe disease. Studies of bioaerosols have primarily focused on their chemical composition and largely neglected their biological composition and the negative effects of biological composition on ecosystems and human health. Here, current molecular methods for the identification, quantification, and distribution of bioaerosol agents are reviewed. Modern developments in environmental microbiology technology would be favorable in elucidation of microbial temporal and spatial distribution in the atmosphere at high resolution. In addition, these provide additional supports for growing evidence that microbial diversity or composition in the bioaerosol is an indispensable environmental aspect linking with public health.
Collapse
Affiliation(s)
- Keunje Yoo
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea; Division of Natural Resources Conservation, Korea Environment Institute, Sejong-si 30147, South Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26493, South Korea
| | - Eun Joo Choi
- Department of Systems Biology, Yonsei University, Seoul 03722, South Korea
| | - Jihoon Yang
- Division of Natural Resources Conservation, Korea Environment Institute, Sejong-si 30147, South Korea
| | - Sudheer Kumar Shukla
- Department of Built and Natural Environment, Caledonian College of Engineering, Sultanate of Oman
| | - Sang-Il Hwang
- Division of Natural Resources Conservation, Korea Environment Institute, Sejong-si 30147, South Korea
| | - Joonhong Park
- Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea.
| |
Collapse
|
7
|
Eichorst SA, Strasser F, Woyke T, Schintlmeister A, Wagner M, Woebken D. Advancements in the application of NanoSIMS and Raman microspectroscopy to investigate the activity of microbial cells in soils. FEMS Microbiol Ecol 2015; 91:fiv106. [PMID: 26324854 PMCID: PMC4629873 DOI: 10.1093/femsec/fiv106] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/04/2015] [Accepted: 08/24/2015] [Indexed: 11/15/2022] Open
Abstract
The combined approach of incubating environmental samples with stable isotope-labeled substrates followed by single-cell analyses through high-resolution secondary ion mass spectrometry (NanoSIMS) or Raman microspectroscopy provides insights into the in situ function of microorganisms. This approach has found limited application in soils presumably due to the dispersal of microbial cells in a large background of particles. We developed a pipeline for the efficient preparation of cell extracts from soils for subsequent single-cell methods by combining cell detachment with separation of cells and soil particles followed by cell concentration. The procedure was evaluated by examining its influence on cell recoveries and microbial community composition across two soils. This approach generated a cell fraction with considerably reduced soil particle load and of sufficient small size to allow single-cell analysis by NanoSIMS, as shown when detecting active N2-fixing and cellulose-responsive microorganisms via (15)N2 and (13)C-UL-cellulose incubations, respectively. The same procedure was also applicable for Raman microspectroscopic analyses of soil microorganisms, assessed via microcosm incubations with a (13)C-labeled carbon source and deuterium oxide (D2O, a general activity marker). The described sample preparation procedure enables single-cell analysis of soil microorganisms using NanoSIMS and Raman microspectroscopy, but should also facilitate single-cell sorting and sequencing.
Collapse
Affiliation(s)
- Stephanie A Eichorst
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria
| | - Florian Strasser
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Arno Schintlmeister
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria Large-Instrument Facility for Advanced Isotope Research, University of Vienna, Vienna 1090 Austria
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria Large-Instrument Facility for Advanced Isotope Research, University of Vienna, Vienna 1090 Austria
| | - Dagmar Woebken
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research network 'Chemistry meets Microbiology', University of Vienna, Vienna 1090 Austria
| |
Collapse
|
8
|
Cavalca L, Corsini A, Canzi E, Zanchi R. Rhizobacterial communities associated with spontaneous plant species in long-term arsenic contaminated soils. World J Microbiol Biotechnol 2015; 31:735-46. [PMID: 25700744 DOI: 10.1007/s11274-015-1826-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/16/2015] [Indexed: 10/24/2022]
Abstract
The microbial community composition in three soil fractions (bulk soil, rhizosphere and rhizoplane) of the root-soil system of a thistle, Cirsium arvense, and of a tufted hair grass, Deschampsia caespitosa, was investigated. The two spontaneous wild plant species were predominant in two Italian lands contaminated since centuries by arsenic and at present show high levels of arsenic (from 215 to 12,500 mg kg(-1)). In order to better understand how the rhizobacterial ecosystem responds to a long-term arsenic contamination in term of composition and functioning, culture-independent techniques (DAPI counts, fluorescence in situ hybridization and denaturing gradient gel electrophoresis analysis) along with cultivation-based methods were applied. Microbial community structure was qualitatively similar in the two root-soil systems, but some quantitative differences were observed. Bacteria of the α-, β-, and γ-subclasses of the Proteobacteria were dominant in all fractions, while the subdominant groups (Cytophagaceae, gram-positive spore-forming, and filamentous bacteria) were significantly more abundant in the root-soil system of D. caespitosa. As regards to arsenic resistant strains, Firmicutes, Actinobacteria, Enterobacteria and γ-Proteobacteria were isolated from soil system of both plants. Our results suggest that the response to a high level of arsenic contamination governed the rhizosphere microbial community structure together with the soil structure and the plant host type effects. Data from this study can provide better understanding of complex bacterial communities in metal-polluted soils, as well as useful information of indigenous bacterial strains with potential application to soil remediation.
Collapse
Affiliation(s)
- Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Via Celoria 2, 20133, Milan, Italy
| | | | | | | |
Collapse
|
9
|
Benami M, Gillor O, Gross A. The question of pathogen quantification in disinfected graywater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 506-507:496-504. [PMID: 25437766 DOI: 10.1016/j.scitotenv.2014.11.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 11/15/2014] [Accepted: 11/15/2014] [Indexed: 05/26/2023]
Abstract
Graywater (GW) reuse for irrigation is recognized as a sustainable solution for water conservation. One of the major impediments to GW reuse is the presence of pathogenic microorganisms. This study monitored three similar on-site GW treatment systems bi-monthly over the course of a year to compare the presence of pathogens and indicators in raw, biologically treated, and biologically treated and disinfected [by chlorine and ultraviolet light (UV)] GW. The systems were designed to allow the testing of the same batch (collection) of water as it passed through the treatment chain. The samples were analyzed using standard culture-dependent methods and the data were compared to culture-independent DNA-based methods. Results suggested that the presence and abundance of fecal coliforms, Escherichia coli, Salmonella enterica, Enterococcus spp., Staphylococcus aureus and Pseudomonas aeruginosa differ among the various GW streams (e.g. raw, biologically treated, and disinfected). The culture-dependent analyses suggested that both chlorine and UV inactivate most of the bacteria tested in the biologically treated GW, albeit at different efficiencies. Conversely, the DNA-based analyses indicated no significant differences in pathogenic bacterial abundance between the biologically treated GW with or without disinfection. To better understand the discrepancies between the results, we repeated the analysis in the laboratory under controlled conditions using Enterococcus faecalis as a model bacterium and obtained similar results. We suggest that disinfection of biologically treated GW with chlorine or UV is effective for treating pathogens, but that the inactivation efficiency cannot be estimated by DNA-based qPCR.
Collapse
Affiliation(s)
- Maya Benami
- Zuckerberg Institute for Water Research, Israel; Albert Katz International School for Desert Studies,; The Jacob Blaustein Institutes for Desert Research,; Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion 84990, Israel
| | - Osnat Gillor
- Zuckerberg Institute for Water Research, Israel; Albert Katz International School for Desert Studies,; The Jacob Blaustein Institutes for Desert Research,; Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion 84990, Israel.
| | - Amit Gross
- Zuckerberg Institute for Water Research, Israel; Albert Katz International School for Desert Studies,; The Jacob Blaustein Institutes for Desert Research,; Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben Gurion 84990, Israel.
| |
Collapse
|
10
|
Brehm-Stecher B, Bisha B. Flow Cytometry for Rapid Detection of Salmonella spp. in Seed Sprouts. SCIENCEOPEN RESEARCH 2014. [DOI: 10.14293/s2199-1006.1.sor-life.aj19wr.v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Seed sprouts (alfalfa, mung bean, radish, etc.) have been implicated in several recent national and international outbreaks of salmonellosis. Conditions used for sprouting are also conducive to the growth of Salmonella. As a result, this pathogen can quickly grow to very high cell densities during sprouting without any detectable organoleptic impact. Seed sprouts typically also support heavy growth (~108 CFU g-1) of a heterogeneous microbiota consisting of various bacterial, yeast and mold species, often dominated by non-pathogenic members of the family Enterobacteriaceae. This heavy background may present challenges to the detection of Salmonella, especially if this pathogen is present in relatively low numbers. We combined DNA-based fluorescence in situ hybridization (FISH) with flow cytometry (FCM) for the rapid molecular detection of Salmonella enterica Ser. Typhimurium in artificially contaminated alfalfa and other seed sprouts. Components of the assay included a set of cooperatively binding probes, a chemical blocking treatment intended to reduce non-specific background and sample concentration via tangential flow filtration (TFF). We were able to detect S. Typhimurium in sprout wash at levels as low as 103 CFU ml-1 sprout wash (104 CFU g-1 sprouts) against high microbial backgrounds (~108 CFU g-1 sprouts). Hybridization times were typically 30 min, with additional washing, but we ultimately found that S. Typhimurium could be readily detected using hybridization times as short as 2 min, without a wash step. These results clearly demonstrate the potential of combined DNA-FISH and FCM for rapid detection of Salmonella in this challenging food matrix and provides industry with a useful tool for compliance with sprout production standards proposed in the Food Safety Modernization Act (FSMA).
Collapse
|
11
|
Manucharova NA, Kol’tsova EM, Stepanov AL, Demkina EV, Demkin VA, El’-Registan GI. Comparative analysis of the functional activity and composition of hydrolytic microbial complexes from the lower Volga barrow and modern chestnut soils. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171405018x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Gammaproteobacterial methanotrophs dominate cold methane seeps in floodplains of West Siberian rivers. Appl Environ Microbiol 2014; 80:5944-54. [PMID: 25063667 DOI: 10.1128/aem.01539-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A complex system of muddy fluid-discharging and methane (CH4)-releasing seeps was discovered in a valley of the river Mukhrinskaya, one of the small rivers of the Irtysh Basin, West Siberia. CH4 flux from most (90%) of these gas ebullition sites did not exceed 1.45 g CH4 h(-1), while some seeps emitted up to 5.54 g CH4 h(-1). The δ(13)C value of methane released from these seeps varied between -71.1 and -71.3‰, suggesting its biogenic origin. Although the seeps were characterized by low in situ temperatures (3.5 to 5°C), relatively high rates of methane oxidation (15.5 to 15.9 nmol CH4 ml(-1) day(-1)) were measured in mud samples. Fluorescence in situ hybridization detected 10(7) methanotrophic bacteria (MB) per g of mud (dry weight), which accounted for up to 20.5% of total bacterial cell counts. Most (95.8 to 99.3%) methanotroph cells were type I (gammaproteobacterial) MB. The diversity of methanotrophs in this habitat was further assessed by pyrosequencing of pmoA genes, encoding particulate methane monooxygenase. A total of 53,828 pmoA gene sequences of seep-inhabiting methanotrophs were retrieved and analyzed. Nearly all of these sequences affiliated with type I MB, including the Methylobacter-Methylovulum-Methylosoma group, lake cluster 2, and several as-yet-uncharacterized methanotroph clades. Apparently, microbial communities attenuating methane fluxes from these local but strong CH4 sources in floodplains of high-latitude rivers have a large proportion of potentially novel, psychrotolerant methanotrophs, thereby providing a challenge for future isolation studies.
Collapse
|
13
|
Characterization of culturable heterotrophic bacteria in hydrocarbon-contaminated soil from an alpine former military site. World J Microbiol Biotechnol 2014; 30:1717-24. [PMID: 24402300 DOI: 10.1007/s11274-013-1594-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
We characterized the culturable, heterotrophic bacterial community in soil collected from a former alpine military site contaminated with petroleum hydrocarbons. The physiologically active eubacterial community, as revealed by fluorescence-in situ-hybridization, accounted for 14.9 % of the total (DAPI-stained) bacterial community. 4.0 and 1.2 % of the DAPI-stained cells could be attributed to culturable, heterotrophic bacteria able to grow at 20 and 10 °C, respectively. The majority of culturable bacterial isolates (23/28 strains) belonged to the Proteobacteria with a predominance of Alphaproteobacteria. The remaining isolates were affiliated with the Firmicutes, Actinobacteria and Bacteroidetes. Five strains could be identified as representatives of novel species. Characterization of the 28 strains demonstrated their adaptation to the temperature and nutrient conditions prevailing in the studied soil. One-third of the strains was able to grow at subzero temperatures (-5 °C). Studies on the effect of temperature on growth and lipase production with two selected strains demonstrated their low-temperature adaptation.
Collapse
|
14
|
Wang F, Fekete A, Harir M, Chen X, Dörfler U, Rothballer M, Jiang X, Schmitt-Kopplin P, Schroll R. Soil remediation with a microbial community established on a carrier: strong hints for microbial communication during 1,2,4-Trichlorobenzene degradation. CHEMOSPHERE 2013; 92:1403-1409. [PMID: 23601124 DOI: 10.1016/j.chemosphere.2013.03.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/12/2013] [Accepted: 03/17/2013] [Indexed: 06/02/2023]
Abstract
The objective of the present study was to get more insight into the mechanisms that govern the high mineralization potential of a microbial community attached on a carrier material, as we found in an earlier study (Wang et al., 2010). A 1,2,4-Trichlorobenzene (1,2,4-TCB) degrading microbial community - attached (MCCP) and non-attached (MCLM) on clay particles - was inoculated into a simplified mineral medium system. Signaling molecules (AHLs), cell growth and 1,2,4-TCB mineralization were measured at different sampling points. The production of AHLs in the MCCP system increased continuously with increasing key degrader (Bordetella sp.) cell growth and a positive correlation was observed between the production of AHLs and 1,2,4-TCB mineralization. In the MCLM system, however, 1,2,4-TCB mineralization was lower than in the MCCP system; the AHLs production per Bordetella cell was higher than in MCCP and there was no correlation between AHLs and mineralization. Moreover, in the MCCP system less different AHLs were produced than in the MCLM system. These results indicate that a microbial community attached on a carrier material has an advantage over a non-attached community: it produces signaling molecules with much less energy and effort to achieve a well-directed cell-to-cell communication resulting in a high and effective mineralization.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Double-color fluorescence in situ hybridization (FISH) for the detection of Bacillus anthracis spores in environmental samples with a novel permeabilization protocol. J Microbiol Methods 2013; 93:177-84. [PMID: 23523967 DOI: 10.1016/j.mimet.2013.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/10/2013] [Accepted: 03/10/2013] [Indexed: 11/22/2022]
Abstract
For anti-bioterrorism measures against the use of Bacillus anthracis, a double-color fluorescence in situ hybridization (FISH) is proposed, for the rapid and specific detection of B. anthracis. The probes were designed based on the differences in 16S and 23S rRNA genes of B. cereus group. A new permeabilization protocol was developed to enhance the permeability of FISH probes into B. anthracis spores. The highest detection rate (90.8 ± 0.69) of B. anthracis spores by FISH was obtained with successive incubation steps with 50% ethanol at 80 °C, a mixture of SDS/DTT solution (10mg/ml SDS, 50mM DTT) at 65 °C and finally in a lysozyme solution (20mg/ml) at 37 °C for 30 min each. This protocol was evaluated for the detection of B. anthracis spores in soil and air samples after adding formalin-fixed spores at different densities. The results have proven the success of double-color FISH in detecting B. anthracis spores in air samples in the range of 10(3) spores/m(3) and above. Conversely, for detecting B. anthracis spores in a soil sample, the lowest detection limit was found to be 10(7) spores/g dry soils. These results confirm the applicability of the developed permeabilization protocol, combined with the double-color FISH technique in specific detection of B. anthracis in soil and air samples.
Collapse
|
16
|
Morozova D, Let D, Würdemann H. Analysis of the Microbial Community from a Saline Aquifer Prior to CO2 Injection in Ketzin Using Improved Fluorescence in situ Hybridisation Method. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.egypro.2013.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Evaluation of the environmental specificity of Fluorescence In Situ Hybridization (FISH) using Fluorescence-Activated Cell Sorting (FACS) of probe (PSE1284)-positive cells extracted from rhizosphere soil. Syst Appl Microbiol 2012; 35:533-40. [DOI: 10.1016/j.syapm.2011.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 01/14/2023]
|
18
|
Korzeniewska E, Harnisz M. Culture-Dependent and Culture-Independent Methods in Evaluation of Emission of Enterobacteriaceae from Sewage to the Air and Surface Water. WATER, AIR, AND SOIL POLLUTION 2012; 223:4039-4046. [PMID: 22865940 PMCID: PMC3409368 DOI: 10.1007/s11270-012-1171-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/03/2012] [Indexed: 05/26/2023]
Abstract
The number of Enterobacteriaceae, with particular attention given to the presence of Escherichia coli and Klebsiella pneumoniae, was determined in hospital effluents and municipal wastewater after various stages of purification. The emission of these microorganisms to the ambient air near wastewater treatment plant (WWTP) facilities and to the river water, which is a receiver of the WWTP effluent, was also studied using fluorescence in situ hybridization (FISH) and cultivation methods. The number of Enterobacteriaceae determined by cultivation and fluorescence methods in different kinds of sewage sample ranged from 0.5 × 10(3) to 2.9 × 10(6) CFU/ml and from 2.2 × 10(5) to 1.3 × 10(8) cells/ml, respectively. Their removal rates during treatment processes were close to 99 %, but the number of these bacteria in the WWTP outflow was quite high and ranged from 5.9 × 10(3) to 3.5 × 10(4) CFU/ml and from 1.1 × 10(5) to 6.1 × 10(5) cells/ml, respectively. In the river water and the air samples, the number of Enterobacteriaceae was also high and ranged from 4.1 × 10(3) to 7.9 × 10(3) CFU/ml and from 3 to 458 CFU/m(3), respectively. The numbers of these microorganisms obtained from fluorescence and cultivation methods were statistically and significantly correlated; however, the analysis of the studied samples indicated that the FISH method gave values up to 10(3)-fold times greater than those obtained by the cultivation method. From a sanitary point of view, this means that the number of viable fecal bacteria is systematically underestimated by traditional culture-based methods. Thus, the FISH proves to be a method that could be used to estimate bacterial load, particularly in air samples and less contaminated river water.
Collapse
Affiliation(s)
- Ewa Korzeniewska
- Department of Environmental Microbiology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland
| | - Monika Harnisz
- Department of Environmental Microbiology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-957 Olsztyn, Poland
| |
Collapse
|
19
|
Stefanis C, Alexopoulos A, Voidarou C, Vavias S, Bezirtzoglou E. Principal methods for isolation and identification of soil microbial communities. Folia Microbiol (Praha) 2012; 58:61-8. [PMID: 22791233 DOI: 10.1007/s12223-012-0179-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 06/25/2012] [Indexed: 12/18/2022]
Abstract
Soil microbial populations play crucial role in soil properties and influence below-ground ecosystem processes. Microbial composition and functioning changes the soil quality through decomposition of organic matter, recycling of nutrients, and biological control of parasites of plants. Moreover, the discovery that soil microbes may translate into benefits for biotechnology, management of agricultural, forest, and natural ecosystems, biodegradation of pollutants, and waste treatment systems maximized the need of scientists for the isolation and their characterization. Operations such as the production of antibiotics and enzymic activities from microorganisms of soil constitute objectives of industry in her effort to cope with the increase of population of earth and disturbance of environment and may ameliorate the effects of global climate change. In the past decades, new biochemical and molecular techniques have been developed in our effort to identify and classify soil bacteria. The goal of measuring the soil microbial diversity is difficult because of the limited knowledge about bacteria species and classification through families and orders. Molecular techniques extend our knowledge about microbial diversity and help the taxonomy of species. Measuring and monitoring soil microbial communities can lead us to better understanding of their composition and function in many ecosystem processes.
Collapse
Affiliation(s)
- Christos Stefanis
- Department of Food Science and Technology, Laboratory of Microbiology, Biotechnology and Hygiene, Democritus University of Thrace, 193 Pandazidou Str, 68200, Orestiada, Greece.
| | | | | | | | | |
Collapse
|
20
|
Dianou D, Ueno C, Ogiso T, Kimura M, Asakawa S. Diversity of cultivable methane-oxidizing bacteria in microsites of a rice paddy field: investigation by cultivation method and fluorescence in situ hybridization (FISH). Microbes Environ 2012; 27:278-87. [PMID: 22446309 PMCID: PMC4036049 DOI: 10.1264/jsme2.me11327] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The diversity of cultivable methane-oxidizing bacteria (MOB) in the rice paddy field ecosystem was investigated by combined culture-dependent and fluorescence in situ hybridization (FISH) techniques. Seven microsites of a Japanese rice paddy field were the focus of the study: floodwater, surface soil, bulk soil, rhizosphere soil, root, basal stem of rice plant, and rice stumps of previous harvest. Based on pmoA gene analysis and transmission electron microscopy (TEM), four type I, and nine type II MOB isolates were obtained from the highest dilution series of enrichment cultures. The type I MOB isolates included a novel species in the genus Methylomonas from floodwater and this is the first type I MOB strain isolated from floodwater of a rice paddy field. In the type I MOB, two isolates from stumps were closely related to Methylomonas spp.; one isolate obtained from rhizosphere soil was most related to Methyloccocus-Methylocaldum-Methylogaea clade. Almost all the type II MOB isolates were related to Methylocystis methanotrophs. FISH confirmed the presence of both types I and II MOB in all the microsites and in the related enrichment cultures. The study reported, for the first time, the diversity of cultivable methanotrophs including a novel species of type I MOB in rice paddy field compartments. Refining growth media and culture conditions, in combination with molecular approaches, will allow us to broaden our knowledge on the MOB community in the rice paddy field ecosystem and consequently to implement strategies for mitigating CH4 emission from this ecosystem.
Collapse
Affiliation(s)
- Dayéri Dianou
- Centre National de la Recherche Scientifique et Technologique, 03BP7192 Ouagadougou, Burkina Faso
| | | | | | | | | |
Collapse
|
21
|
de-Bashan LE, Schmid M, Rothballer M, Hartmann A, Bashan Y. CELL-CELL INTERACTION IN THE EUKARYOTE-PROKARYOTE MODEL OF THE MICROALGAE CHLORELLA VULGARIS AND THE BACTERIUM AZOSPIRILLUM BRASILENSE IMMOBILIZED IN POLYMER BEADS(1). JOURNAL OF PHYCOLOGY 2011; 47:1350-9. [PMID: 27020359 DOI: 10.1111/j.1529-8817.2011.01062.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cell-cell interaction in the eukaryote-prokaryote model of the unicellular, freshwater microalga Chlorella vulgaris Beij. and the plant growth-promoting bacterium Azospirillum brasilense, when jointly immobilized in small polymer alginate beads, was evaluated by quantitative fluorescence in situ hybridization (FISH) combined with SEM. This step revealed significant changes, with an increase in the populations of both partners, cluster (mixed colonies) mode of colonization of the bead by the two microorganisms, increase in the size of microalgae-bacterial clusters, movement of the motile bacteria cells toward the immotile microalgae cells within solid matrix, and formation of firm structures among the bacteria, microalgae cells, and the inert matrix that creates a biofilm. This biofilm was sufficiently strong to keep the two species attached to each other, even after eliminating the alginate support. This study showed that the common structural phenotypic interaction of Azospirillum with roots of higher plants, via fibrils and sheath material, is also formed and maintained during the interaction of this bacterium with the surface of rootless single-cell microalgae.
Collapse
Affiliation(s)
- Luz E de-Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| | - Michael Schmid
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| | - Michael Rothballer
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| | - Anton Hartmann
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| | - Yoav Bashan
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USAHelmholtz Zentrum München, German Research Centre for Environmental Health, Department of Microbe-Plant Interactions, Ingolstaedter Landstrasse 1, D-85764 Neuherberg, Germany Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, B.C.S. 23090, Mexico The Bashan Foundation, 3740 NW Harrison Blvd., Corvallis, Oregon 97330, USA
| |
Collapse
|
22
|
Franklin RB, Campbell AH, Higgins CB, Barker MK, Brown BL. Enumerating bacterial cells on bioadhesive coated slides. J Microbiol Methods 2011; 87:154-60. [DOI: 10.1016/j.mimet.2011.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/17/2011] [Accepted: 08/21/2011] [Indexed: 11/24/2022]
|
23
|
Covarrubias SA, de-Bashan LE, Moreno M, Bashan Y. Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol 2011; 93:2669-80. [DOI: 10.1007/s00253-011-3585-8] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 08/19/2011] [Accepted: 09/15/2011] [Indexed: 11/28/2022]
|
24
|
Development and application of an enzymatic and cell flotation treatment for the recovery of viable microbial cells from environmental matrices such as anaerobic sludge. Appl Environ Microbiol 2011; 77:8487-93. [PMID: 22003005 DOI: 10.1128/aem.05549-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Efficient dissociation of microorganisms from their aggregate matrix is required to study the microorganisms without interaction with their native environment (e.g., biofilms, flocs, granules, etc.) and to assess their community composition through the application of molecular or microscopy techniques. To this end, we combined enzymatic treatments and a cell extraction by density gradient to efficiently recover anaerobic microorganisms from urban wastewater treatment plant sludge. The enzymes employed (amylase, cellulase, DNase, and pectinase) as a pretreatment softly disintegrated the extrapolymeric substances (EPS) interlocked with the microorganisms. The potential damaging effects of the applied procedure on bacterial and archaeal communities were assessed by studying the variations in density (using quantitative PCR), diversity (using capillary electrophoresis single-strand conformation polymorphism fingerprinting [CE-SSCP]), and activity (using a standard anaerobic activity test) of the extracted microorganisms. The protocol preserved the general capacity of the microbial community to produce methane under anaerobic conditions and its diversity; particularly the archaeal community was not affected in terms of either density or structure. This cell extraction procedure from the matrix materials offers interesting perspectives for metabolic, microscopic, and molecular assays of microbial communities present in complex matrices constituted by bioaggregates or biofilms.
Collapse
|
25
|
Ryuda N, Hashimoto T, Ueno D, Inoue K, Someya T. Visualization and direct counting of individual denitrifying bacterial cells in soil by nirK-targeted direct in situ PCR. Microbes Environ 2011; 26:74-80. [PMID: 21487206 DOI: 10.1264/jsme2.me10180] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The abundance of denitrifying bacteria in soil has been determined primarily by the conventional most probable number (MPN) method. We have developed a single-cell identification technique that is culture-independent, direct in situ PCR, to enumerate denitrifying bacteria in soils. The specificity of this method was evaluated with six species of denitrifying bacteria using nirK as the target gene; Escherichia coli was used as a negative control. Almost all (97.3%-100%) of the nirK-type denitrifying bacteria (Agromonas oligotrophica, Alcaligenes faecalis, Achromobacter denitrificans, Bradyrhizobium japonicum, and Pseudomonas chlororaphis) were detected by direct in situ PCR, whereas no E. coli cells and only a few cells (2.4%) of nirS-type denitrifying bacteria (Pseudomonas aeruginosa) were detected. Numbers of denitrifying bacteria in upland and paddy soil samples quantified by this method were 3.3 × 10(8) to 2.6 × 10(9) cells g(-1) dry soil. These values are approximately 1,000 to 300,000 times higher than those estimated by the MPN method. These results suggest that direct in situ PCR is a better tool for quantifying denitrifying bacteria in soil than the conventional MPN method.
Collapse
Affiliation(s)
- Noriko Ryuda
- Division of Soil Science, Faculty of Agriculture, Saga University, Saga 840–8502, Japan
| | | | | | | | | |
Collapse
|
26
|
Margesin R, Płaza GA, Kasenbacher S. Characterization of bacterial communities at heavy-metal-contaminated sites. CHEMOSPHERE 2011; 82:1583-1588. [PMID: 21159361 DOI: 10.1016/j.chemosphere.2010.11.056] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Revised: 11/07/2010] [Accepted: 11/21/2010] [Indexed: 05/30/2023]
Abstract
The microbial community in soil samples from two long-term contaminated sites was characterized by using culture-dependent and culture-independent methods. The two sites investigated contained high amounts of heavy metals and were located in the upper Silesia Industrial Region in southern Poland. The evaluation of the aerobic soil microbial population clearly demonstrated the presence of considerable numbers of viable, culturable bacteria at both sites. A high fraction of the bacterial population was able to grow in the presence of high amounts of metals, i.e. up to 10 mM Zn²(+), 3 mM Pb²(+) or 1 mM Cu²(+). Site 1 contained significantly (P < 0.05) lower bacterial numbers growing in the presence of 10 mM Zn²(+) than site 2, while the opposite was observed for bacteria tolerating 1 mM Cu²(+). This coincided with the contents of these two metals at the two sites. Ecophysiological (EP) indices for copiotrophs (r-strategists) and oligotrophs (K-strategists) pointed to high bacterial diversity at both sites. Fluorescence in situ hybridization (FISH) analysis indicated that Actinobacteria and Proteobacteria represent the physiologically active fraction of bacteria at the two sites. Shannon diversity (H') indices for FISH-detected bacterial phylogenetic groups were not significantly different at the two sites.
Collapse
Affiliation(s)
- Rosa Margesin
- Institute of Microbiology, University of Innsbruck, Innsbruck, Austria.
| | | | | |
Collapse
|
27
|
Mittag A, Pinto FE, Endringer DC, Tarnok A, Lenz D. Cellular analysis by open-source software for affordable cytometry. SCANNING 2011; 33:33-40. [PMID: 21319173 DOI: 10.1002/sca.20220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 01/11/2011] [Indexed: 05/30/2023]
Abstract
Image cytometry is an important technique in affordable healthcare and cellular research. Some efforts toward establishing a personal, low-cost cytometer have been described in the literature. However, a self-assembled fluorescence microscope requires software for cytometric analysis. There are some open-source image-based software analysis applications available. However, for a quantitative analysis of images, software that can generate data comparable to those of previously evaluated cytometric analyses programs is required. Hence, the aim of this study is to compare results of a commercially available image cytometry program to data obtained using the open-source software CellProfiler (CP). Leukocytes and fluorescent bead images obtained using a Laser Scanning Cytometer were analyzed by CP and the results compared with those of conventional cytometric analyses' programs. Algorithms were developed enabling the analysis of leukocytes and beads by CP. CP provided similar results to those obtained by the cytometer software. Hallmark parameters, including cell count and fluorescence intensity, revealed a high correlation in the analysis of both programs. Therefore, CP is appropriate for cellular analysis on a self-assembled microscope, thereby enabling affordable cytometry.
Collapse
Affiliation(s)
- Anja Mittag
- Translational Centre for Regenerative Medicine, Leipzig, Germany
| | | | | | | | | |
Collapse
|
28
|
Fluorescence in situ hybridization rapidly detects three different pathogenic bacteria in urinary tract infection samples. J Microbiol Methods 2010; 83:175-8. [DOI: 10.1016/j.mimet.2010.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 08/17/2010] [Accepted: 08/17/2010] [Indexed: 11/20/2022]
|
29
|
Selected fluorescent techniques for identification of the physiological state of individual water and soil bacterial cells - review. Folia Microbiol (Praha) 2010; 55:107-18. [PMID: 20490752 DOI: 10.1007/s12223-010-0017-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 02/08/2010] [Indexed: 01/22/2023]
Abstract
Stimulated by demands of the natural environment conservation, the need for thorough structural and functional identification of microorganisms colonizing different ecosystems has contributed to an intensive advance in research techniques. The article shows that some of these techniques are also a convenient tool for determination of the physiological state of single cells in a community of microorganisms. The paper presents selected fluorescent techniques, which are used in research on soil, water and sediment microorganisms. It covers the usability of determination of the dehydrogenase activity of an individual bacterial cell (CTC+) and of bacteria with intact, functioning cytoplasmic membranes, bacteria with an integrated nucleiod (NuCC+) as well as fluorescent in situ hybridization (FISH).
Collapse
|
30
|
Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from an arsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 2010; 33:154-64. [PMID: 20303688 DOI: 10.1016/j.syapm.2010.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 11/20/2022]
Abstract
A rhizobacterial community, associated with the roots of wild thistle Cirsium arvense (L.) growing in an arsenic polluted soil, was studied by fluorescence in situ hybridization (FISH) analysis in conjunction with cultivation-based methods. In the bulk, rhizosphere, and rhizoplane fractions of the soil, the qualitative picture obtained by FISH analysis of the main phylogenetic bacterial groups was similar and was predominantly comprised of Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. The arsenic-resistant isolates belonged to 13 genera, the most abundant being those of Bacillus, Achromobacter, Brevundimonas, Microbacterium, and Ochrobactrum. Most bacteria grew in the presence of high arsenic concentrations (over 100mM arsenate and 10mM arsenite). Most strains possessed the ArsC, ArsB and ACR3 genes homologous to arsenate reductase and to the two classes of arsenite efflux pumps, respectively, peculiar to the ars operon of the arsenic detoxification system. ArsB and ACR3 were present simultaneously in highly resistant strains. An inconsistency between 16S rRNA phylogenetic affiliations and the arsenate reductase sequences of the strains was observed, indicating possible horizontal transfer of arsenic resistance genes in the soil bacterial community. Several isolates were able to reduce arsenate and to oxidise arsenite. In particular, Ancylobacter dichloromethanicum strain As3-1b possessed both characteristics, and arsenite oxidation occurred in the strain also under chemoautotrophic conditions. Some rhizobacteria produced siderophores, indole acetic acid and 1-amino-cyclopropane-1-carboxylic acid deaminase, thus possessing potential plant growth-promoting traits.
Collapse
|
31
|
Agreement, precision, and accuracy of epifluorescence microscopy methods for enumeration of total bacterial numbers. Appl Environ Microbiol 2010; 76:1981-91. [PMID: 20097826 DOI: 10.1128/aem.01724-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To assess interchangeability of estimates of bacterial abundance by different epifluorescence microscopy methods, total bacterial numbers (TBNs) determined by most widely accepted protocols were statistically compared. Bacteria in a set of distinctive samples were stained with acridine orange (AO), 4'-6-diamidino-2-phenylindole (DAPI), and BacLight and enumerated by visual counting (VC) and supervised image analysis (IA). Model II regression and Bland-Altman analysis proved general agreements between IA and VC methods, although IA counts tended to be lower than VC counts by 7% on a logarithmic scale. Distributions of cells and latex beads on polycarbonate filters were best fitted to negative binomial models rather than to Poisson or log-normal models. The fitted models revealed higher precisions of TBNs by the IA method than those by the VC method. In pairwise comparisons of the staining methods, TBNs by AO and BacLight staining showed good agreement with each other, but DAPI staining had tendencies of underestimation. Although precisions of the three staining methods were comparable to one another (intraclass correlation coefficients, 0.97 to 0.98), accuracy of the DAPI staining method was rebutted by disproportionateness of TBNs between pairs of samples that carried 2-fold different volumes of identical cell suspensions. It was concluded that the TBN values estimated by AO and BacLight staining are relatively accurate and interchangeable for quantitative interpretation and that IA provides better precision than does VC. As a prudent measure, it is suggested to avoid use of DAPI staining for comparative studies investigating accuracy of novel cell-counting methods.
Collapse
|
32
|
Qin PZ, Niu CG, Ruan M, Zeng GM, Wang XY. A novel bifunctional europium complex as a potential fluorescent label for DNA detection. Analyst 2010; 135:2144-9. [DOI: 10.1039/c0an00072h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
33
|
Filion G, Laflamme C, Turgeon N, Ho J, Duchaine C. Permeabilization and hybridization protocols for rapid detection of Bacillus spores using fluorescence in situ hybridization. J Microbiol Methods 2009; 77:29-36. [DOI: 10.1016/j.mimet.2008.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 11/17/2022]
|
34
|
Soil amoebae rapidly change bacterial community composition in the rhizosphere of Arabidopsis thaliana. ISME JOURNAL 2009; 3:675-84. [PMID: 19242534 DOI: 10.1038/ismej.2009.11] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We constructed an experimental model system to study the effects of grazing by a common soil amoeba, Acanthamoeba castellanii, on the composition of bacterial communities in the rhizosphere of Arabidopsis thaliana. Amoebae showed distinct grazing preferences for specific bacterial taxa, which were rapidly replaced by grazing tolerant taxa in a highly reproducible way. The relative proportion of active bacteria increased although bacterial abundance was strongly decreased by amoebae. Specific bacterial taxa had disappeared already two days after inoculation of amoebae. The decrease in numbers was most pronounced in Betaproteobacteria and Firmicutes. In contrast, Actinobacteria, Nitrospira, Verrucomicrobia and Planctomycetes increased. Although other groups, such as betaproteobacterial ammonia oxidizers and Gammaproteobacteria did not change in abundance, denaturing gradient gel electrophoresis with specific primers for pseudomonads (Gammaproteobacteria) revealed both specific changes in community composition as well as shifts in functional genes (gacA) involved in bacterial defence responses. The resulting positive feedback on plant growth in the amoeba treatment confirms that bacterial grazers play a dominant role in structuring bacteria-plant interactions. This is the first detailed study documenting how rapidly protozoan grazers induce shifts in rhizosphere bacterial community composition.
Collapse
|
35
|
Amalfitano S, Fazi S. Recovery and quantification of bacterial cells associated with streambed sediments. J Microbiol Methods 2008; 75:237-43. [PMID: 18602952 DOI: 10.1016/j.mimet.2008.06.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/21/2008] [Accepted: 06/11/2008] [Indexed: 10/21/2022]
Abstract
Efficient detachment and purification of bacterial cells associated with streambed sediments are required in order to quantify cell abundance and to assess community composition through the application of epifluorescence microscopy techniques. We applied chemical (i.e., sodium pyrophosphate and polysorbate) and physical treatments (i.e., shaking and sonication), followed by Nycodenz density gradient centrifugation to efficiently recover benthic bacteria. This procedure resulted in a highly purified cell suspension allowing for a precise cell quantification through the application of fluorescent dyes. About 93% of total cells were recovered from the original sediment, with higher recovery from the finer grain-size class (90%) in comparison to the coarse fraction (69%). The potential damaging effects of the applied procedures on cell integrity were assessed on planktonic bacteria in a pre-filtered water control. As a consequence of the high purity of the extracted bacteria, flow cytometry was successfully applied as counting method for sediment cell suspension. However, a significant decrease of protein synthesis in purified samples was measured by estimating the (3)H-Leucine incorporation rates, rising uncertainties on the possibility to apply potential metabolic assays after Nycodenz purification.
Collapse
|
36
|
Wu CH, Hwang YC, Lee W, Mulchandani A, Wood TK, Yates MV, Chen W. Detection of recombinant Pseudomonas putida in the wheat rhizosphere by fluorescence in situ hybridization targeting mRNA and rRNA. Appl Microbiol Biotechnol 2008; 79:511-8. [DOI: 10.1007/s00253-008-1438-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 02/21/2008] [Accepted: 02/29/2008] [Indexed: 11/30/2022]
|