1
|
Zhou Y, Yu H, Zhao X, Ni J, Gan S, Dong W, Du J, Zhou X, Wang X, Song H. Detection and differentiation of seven porcine respiratory pathogens using a multiplex ligation-dependent probe amplification assay. Vet J 2024; 305:106124. [PMID: 38653339 DOI: 10.1016/j.tvjl.2024.106124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Respiratory diseases due to viral or bacterial agents, either alone or in combination, cause substantial economic burdens to the swine industry worldwide. Rapid and reliable detection of causal pathogens is crucial for effective epidemiological surveillance and disease management. This research aimed to employ the multiplex ligation-dependent probe amplification (MLPA) assay for simultaneous detection of seven distinct pathogens causing respiratory problems in swine, porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), porcine respiratory coronavirus (PRCV), porcine circovirus type 2 (PCV2), Pasteurella multocida, Actinobacillus pleuropneumoniae, and Glässerella parasuis. The results indicated no probe cross-reactivity among the seven target agents with other swine pathogens. The detection limits ranged from 5 to 34 copies per assay for the target organisms. The MLPA assay was evaluated with 88 samples and compared to real-time or multiplex PCR for the target pathogens. The MLPA assay demonstrated high relative test sensitivities (100 %) and reasonable to good relative specificities at 62.5 %, 95.1 %, 86.8 %, and 97.6 % for PRRSV, P. multocida, G. parasuis, and PCV2, respectively, relative to comparator PCR assays. In 71 samples where MLPA and comparator PCR assays matched exactly, infections were detected in 64 samples (90.1 %), with PRRSV being the most commonly found virus and 50.7 % of the samples showing co-infection with two to five of the pathogens. This approach serves as a valuable tool for conducting differential diagnoses and epidemiological investigations of pathogen prevalence within swine populations.
Collapse
Affiliation(s)
- Yingshan Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Haoran Yu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xiuling Zhao
- Ningbo Key Laboratory of Port Biological and Food Safety Testing, Technical Center of Ningbo Customs, Ningbo, Zhejiang Province 315000, China
| | - Jianbo Ni
- Ningbo Key Laboratory of Port Biological and Food Safety Testing, Technical Center of Ningbo Customs, Ningbo, Zhejiang Province 315000, China
| | - Shiqi Gan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Wanyu Dong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Jing Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xingdong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China
| | - Xiaodu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics and Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology and College of Veterinary Medicine of Zhejiang A and F University, 666 Wusu St., Lin'an District, Hangzhou, Zhejiang Province 311300, China.
| |
Collapse
|
2
|
Moussa DG, Ahmad P, Mansour TA, Siqueira WL. Current State and Challenges of the Global Outcomes of Dental Caries Research in the Meta-Omics Era. Front Cell Infect Microbiol 2022; 12:887907. [PMID: 35782115 PMCID: PMC9247192 DOI: 10.3389/fcimb.2022.887907] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 12/20/2022] Open
Abstract
Despite significant healthcare advances in the 21st century, the exact etiology of dental caries remains unsolved. The past two decades have witnessed a tremendous growth in our understanding of dental caries amid the advent of revolutionary omics technologies. Accordingly, a consensus has been reached that dental caries is a community-scale metabolic disorder, and its etiology is beyond a single causative organism. This conclusion was based on a variety of microbiome studies following the flow of information along the central dogma of biology from genomic data to the end products of metabolism. These studies were facilitated by the unprecedented growth of the next- generation sequencing tools and omics techniques, such as metagenomics and metatranscriptomics, to estimate the community composition of oral microbiome and its functional potential. Furthermore, the rapidly evolving proteomics and metabolomics platforms, including nuclear magnetic resonance spectroscopy and/or mass spectrometry coupled with chromatography, have enabled precise quantification of the translational outcomes. Although the majority supports 'conserved functional changes' as indicators of dysbiosis, it remains unclear how caries dynamics impact the microbiota functions and vice versa, over the course of disease onset and progression. What compounds the situation is the host-microbiota crosstalk. Genome-wide association studies have been undertaken to elucidate the interaction of host genetic variation with the microbiome. However, these studies are challenged by the complex interaction of host genetics and environmental factors. All these complementary approaches need to be orchestrated to capture the key players in this multifactorial disease. Herein, we critically review the milestones in caries research focusing on the state-of-art singular and integrative omics studies, supplemented with a bibliographic network analysis to address the oral microbiome, the host factors, and their interactions. Additionally, we highlight gaps in the dental literature and shed light on critical future research questions and study designs that could unravel the complexities of dental caries, the most globally widespread disease.
Collapse
Affiliation(s)
- Dina G. Moussa
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Paras Ahmad
- College of Dentistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Tamer A. Mansour
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States
- Department of Clinical Pathology, School of Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
3
|
Bioactive resin-based composite with surface pre-reacted glass-ionomer filler and zwitterionic material to prevent the formation of multi-species biofilm. Dent Mater 2019; 35:1331-1341. [PMID: 31320183 DOI: 10.1016/j.dental.2019.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/10/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study evaluated the synergetic effect between surface pre-reacted glass-ionomer (SPRG) filler and 2-methacryloyloxyethyl phosphorylcholine (MPC), for inhibiting multi-species biofilm formation, while maintaining or even improving the original beneficial features of SPRG-filled resin-based composite (RBC). METHODS MPC (1.5-10wt%) was incorporated into commercial SPRG-filled RBC. Then, the inherent properties of RBC, and ion release and acid-neutralising properties associated with SPRG were investigated. Further, protein adsorptions and bacterial adhesion and viability on the SPRG-filled RBC surfaces were studied using four kinds of oral bacteria; Streptococcus mutans, Actinomyces naeslundii, Veillonella parvula, and Porphyromonas gingivalis. Finally, the thickness and biomass of the human saliva-derived biofilm model cultured on test and control samples were analysed. RESULTS Addition of MPC content resulted in decreased flexural strength and wettability of SPRG-filled RBC. SPRG-filled RBC released significantly higher amounts of multiple ions as contents of MPC increased. Meanwhile, SPRG-filled RBC with 5-wt% MPC significantly improved acid-neutralising properties than those of other test and control samples (P<0.001). SPRG-filled RBC with 3wt% MPC significantly reduced the amount of adsorbed bovine serum albumin and proteins from the brain heart infusion medium as compared to the control (P<0.01). A similar trend was observed in the attachment of four types of bacteria and multi-species biofilm (P<0.01). SIGNIFICANCE Despite limitation in terms of deteriorations of some physical properties, addition of 3% MPC to SPRG-filled RBC leads to inhibition of the attachment of multi-species bacteria on its surface, as well as inhibition of biofilm growth. Moreover, the original important bioactive features of SPRG-filled RBC such as ion release and acid neutralisations are either maintained or improved upon adding MPC.
Collapse
|
4
|
Kwon JS, Lee MJ, Kim JY, Kim D, Ryu JH, Jang S, Kim KM, Hwang CJ, Choi SH. Novel anti-biofouling light-curable fluoride varnish containing 2-methacryloyloxyethyl phosphorylcholine to prevent enamel demineralization. Sci Rep 2019; 9:1432. [PMID: 30723241 PMCID: PMC6363795 DOI: 10.1038/s41598-018-38255-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022] Open
Abstract
We evaluated the efficacy of light-curable fluoride varnish (LCFV) that contains 2-methacryloyloxyethyl phosphorylcholine (MPC) in terms of anti-biofouling properties and prevention of tooth enamel demineralization. MPC was mixed with and incorporated into LCFV at 0 (control), 1.5, 3.0, 5.0, 10.0, 20.0, and 40.0 weight percentage (wt%). Addition of high wt% of MPC resulted in increased film thickness and decreased the degree of conversion, indicating loss of the advantageous properties of LCFV. Addition of 1.5, 3, or 5 wt% MPC significantly reduced the amount of bovine serum albumin adsorbed from a solution and proteins adsorbed from brain heart infusion medium compared to the control (P < 0.001). A similar pattern was observed for bacterial adhesion: significantly less Streptococcus mutans cells adhered on the surface of LCFV with 1.5, 3, or 5 wt% MPC (P < 0.001) than on the control, and similar results were obtained for Actinomyces naeslundii and Streptococcus sanguinis adherence to LCFV with 3 wt% MPC. Finally, bacterial adhesion, surface microhardness loss, and the depth of demineralization were substantially lower on bovine tooth enamel surface coated with LCFV containing 3 wt% of MPC than in the control treatment (0 wt% MPC). Therefore, this novel LCFV containing a low concentration of MPC (e.g., 3 wt%) would be effective in anti-biofouling while maintaining the important advantageous features of light-curable fluoride in preventing demineralization.
Collapse
Affiliation(s)
- Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Myung-Jin Lee
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Ji-Young Kim
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Dohyun Kim
- Department of Conservative Dentistry, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Jeong-Hyun Ryu
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea.,BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sungil Jang
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Republic of Korea.,Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Chung-Ju Hwang
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity, Yonsei University College of Dentistry, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Uno N, Araki N, Kaku N, Kosai K, Hasegawa H, Yanagihara K. Clinical application of a ligation-independent pathway of multiplex ligation-dependent probe amplification for the determination of quinolone susceptibility of Streptococcus pneumoniae. J Microbiol Methods 2016; 128:13-15. [PMID: 27343683 DOI: 10.1016/j.mimet.2016.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
Abstract
We previously uncovered a ligation-independent pathway of multiplex ligation-dependent probe amplification (MLPA) through which products of MLPA could be amplified without both hybridization and ligation reactions. Here, we utilized this pathway to detect an antibiotic resistance mutation of quinolones in Streptococcus pneumoniae.
Collapse
Affiliation(s)
- Naoki Uno
- Department of Laboratory Medicine, Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Nobuko Araki
- Department of Laboratory Medicine, Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Norihito Kaku
- Department of Laboratory Medicine, Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroo Hasegawa
- Department of Laboratory Medicine, Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University, Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
6
|
Li CL, Seneviratne CJ, Huo L, Lu WW, Zheng LW. Impact of Actinomyces naeslundii on bisphosphonate-related osteonecrosis of the jaws in ovariectomized rats with periodontitis. J Craniomaxillofac Surg 2015; 43:1662-9. [PMID: 26293192 DOI: 10.1016/j.jcms.2015.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/02/2015] [Accepted: 07/02/2015] [Indexed: 11/26/2022] Open
Abstract
Bisphosphonates-related osteonecrosis of the jaws (BRONJ) is a severe complication of BPs therapy with unknown pathogenesis. This study aimed to evaluate the impact of Actinomyces naeslundii (A. naeslundii) on the progression of BRONJ in ovariectomized (OVX) rat model with periodontal diseases. Sixty rats were randomly assigned into four groups. All rats underwent bilateral ovariectomy. Six weeks after surgery, animals with periodontitis induced by ligature placement were administrated with normal saline (NS), NS &A. naeslundii inoculation, zolecdronic acid (ZA) and ZA &A. naeslundii inoculation for 12 weeks, respectively. Loads of total bacteria and A. naeslundii in the mouth were assessed by real time PCR. After sacrifice, the mandibles were harvested for micro-computed tomography (micro-CT) and histological examination. Real-time PCR demonstrated that A. naeslundii was not routinely found in the rats and ZA treatment did not promote its accumulation. Micro-CT examination disclosed that ligature placement induced significant alveolar bone loss, which was greatly attenuated by ZA treatment and aggravated by A. naeslundii. Histological assessment demonstrated that ZA treatment increased the risk of developing BRONJ-like disease but this condition was not worsen with the presence of A. naeslundii. Our study suggested that oral A. naeslundii inoculation aggravated periodontal disease but not BRONJ in our animal model.
Collapse
Affiliation(s)
- Chun Lei Li
- Discipline of Oral Diagnosis & Polyclinics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; Department of Oral Medicine, Peking University School & Hospital of Stamotology, Beijing, China
| | | | - Lei Huo
- Discipline of Oral Diagnosis & Polyclinics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Weijia William Lu
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Li Wu Zheng
- Discipline of Oral Diagnosis & Polyclinics, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
7
|
Costa EM, Silva S, Madureira AR, Cardelle-Cobas A, Tavaria FK, Pintado MM. A comprehensive study into the impact of a chitosan mouthwash upon oral microorganism's biofilm formation in vitro. Carbohydr Polym 2013; 101:1081-6. [PMID: 24299877 DOI: 10.1016/j.carbpol.2013.09.041] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 08/18/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
Abstract
Modern dentistry emphasizes the importance of dental plaque control to improve oral health. To that end the development of oral care formulations has been geared toward the incorporation of antiplaque agents that may play a crucial role in oral health maintenance. In later years the research into antiplaque agents has led to the discovery of compounds with significant capability to affect biofilm formation. Among these compounds was chitosan, a polysaccharide which showed great ability to interfere with Streptococcus mutans biofilm formation. As such the aim of this work was to incorporate chitosan into a mouthwash matrix and assess its effect upon biofilm formation of oral microorganisms. This assessment was performed via study of the impact the mouthwash upon microbial adherence, biofilm formation and mature biofilms. Additionally, the action of the chitosan mouthwash was compared with two commercially available mouthwashes. The results here obtained show that only the chitosan containing mouthwash was capable of interfering with all microorganisms' adherence, biofilm formation and mature biofilms while at the same time showing vastly superior activity than both commercial mouthwashes assayed. As such a chitosan mouthwash shows great potential as a natural and efficient alternative to traditional mouthwashes.
Collapse
Affiliation(s)
- E M Costa
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, 4200-072 Porto, Portugal
| | | | | | | | | | | |
Collapse
|
8
|
Nyvad B, Crielaard W, Mira A, Takahashi N, Beighton D. Dental Caries from a Molecular Microbiological Perspective. Caries Res 2013. [DOI: 10.1159/000345367] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
9
|
Chung B, Shin GW, Choi W, Hwang HS, Oh MH, Jung GY. An accurate multiplex antibiotic susceptibility test using a high-resolution CE-SSCP-based stuffer-free multiplex ligation-dependent probe amplification system. Electrophoresis 2012; 34:284-8. [DOI: 10.1002/elps.201200372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/04/2012] [Accepted: 09/08/2012] [Indexed: 02/05/2023]
Affiliation(s)
- Boram Chung
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang; Gyeongbuk; Korea
| | - Gi Won Shin
- Institute of Environmental and Energy Technology; Pohang University of Science and Technology; Pohang; Gyeongbuk; Korea
| | - Woong Choi
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang; Gyeongbuk; Korea
| | - Hee Sung Hwang
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang; Gyeongbuk; Korea
| | - Mi-Hwa Oh
- National Institute of Animal Science; Rural Development Administration; Suwon; Gyeonggi; Korea
| | | |
Collapse
|
10
|
De Smet L, Ravoet J, de Miranda JR, Wenseleers T, Mueller MY, Moritz RFA, de Graaf DC. BeeDoctor, a versatile MLPA-based diagnostic tool for screening bee viruses. PLoS One 2012; 7:e47953. [PMID: 23144717 PMCID: PMC3483297 DOI: 10.1371/journal.pone.0047953] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022] Open
Abstract
The long-term decline of managed honeybee hives in the world has drawn significant attention to the scientific community and bee-keeping industry. A high pathogen load is believed to play a crucial role in this phenomenon, with the bee viruses being key players. Most of the currently characterized honeybee viruses (around twenty) are positive stranded RNA viruses. Techniques based on RNA signatures are widely used to determine the viral load in honeybee colonies. High throughput screening for viral loads necessitates the development of a multiplex polymerase chain reaction approach in which different viruses can be targeted simultaneously. A new multiparameter assay, called "BeeDoctor", was developed based on multiplex-ligation probe dependent amplification (MLPA) technology. This assay detects 10 honeybee viruses in one reaction. "BeeDoctor" is also able to screen selectively for either the positive strand of the targeted RNA bee viruses or the negative strand, which is indicative for active viral replication. Due to its sensitivity and specificity, the MLPA assay is a useful tool for rapid diagnosis, pathogen characterization, and epidemiology of viruses in honeybee populations. "BeeDoctor" was used for screening 363 samples from apiaries located throughout Flanders; the northern half of Belgium. Using the "BeeDoctor", virus infections were detected in almost eighty percent of the colonies, with deformed wing virus by far the most frequently detected virus and multiple virus infections were found in 26 percent of the colonies.
Collapse
Affiliation(s)
- Lina De Smet
- Laboratory of Zoophysiology, Department of Physiology, Ghent University, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
11
|
Bergval I, Sengstake S, Brankova N, Levterova V, Abadía E, Tadumaze N, Bablishvili N, Akhalaia M, Tuin K, Schuitema A, Panaiotov S, Bachiyska E, Kantardjiev T, de Zwaan R, Schürch A, van Soolingen D, van ‘t Hoog A, Cobelens F, Aspindzelashvili R, Sola C, Klatser P, Anthony R. Combined species identification, genotyping, and drug resistance detection of Mycobacterium tuberculosis cultures by MLPA on a bead-based array. PLoS One 2012; 7:e43240. [PMID: 22916230 PMCID: PMC3423362 DOI: 10.1371/journal.pone.0043240] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 07/18/2012] [Indexed: 11/29/2022] Open
Abstract
The population structure of Mycobacterium tuberculosis is typically clonal therefore genotypic lineages can be unequivocally identified by characteristic markers such as mutations or genomic deletions. In addition, drug resistance is mainly mediated by mutations. These issues make multiplexed detection of selected mutations potentially a very powerful tool to characterise Mycobacterium tuberculosis. We used Multiplex Ligation-dependent Probe Amplification (MLPA) to screen for dispersed mutations, which can be successfully applied to Mycobacterium tuberculosis as was previously shown. Here we selected 47 discriminative and informative markers and designed MLPA probes accordingly to allow analysis with a liquid bead array and robust reader (Luminex MAGPIX technology). To validate the bead-based MLPA, we screened a panel of 88 selected strains, previously characterised by other methods with the developed multiplex assay using automated positive and negative calling. In total 3059 characteristics were screened and 3034 (99.2%) were consistent with previous molecular characterizations, of which 2056 (67.2%) were directly supported by other molecular methods, and 978 (32.0%) were consistent with but not directly supported by previous molecular characterizations. Results directly conflicting or inconsistent with previous methods, were obtained for 25 (0.8%) of the characteristics tested. Here we report the validation of the bead-based MLPA and demonstrate its potential to simultaneously identify a range of drug resistance markers, discriminate the species within the Mycobacterium tuberculosis complex, determine the genetic lineage and detect and identify the clinically most relevant non-tuberculous mycobacterial species. The detection of multiple genetic markers in clinically derived Mycobacterium tuberculosis strains with a multiplex assay could reduce the number of TB-dedicated screening methods needed for full characterization. Additionally, as a proportion of the markers screened are specific to certain Mycobacterium tuberculosis lineages each profile can be checked for internal consistency. Strain characterization can allow selection of appropriate treatment and thereby improve treatment outcome and patient management.
Collapse
Affiliation(s)
- Indra Bergval
- KIT Biomedical Research, Royal Tropical Institute, Amsterdam, The Netherlands
| | - Sarah Sengstake
- KIT Biomedical Research, Royal Tropical Institute, Amsterdam, The Netherlands
| | - Nadia Brankova
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Edgar Abadía
- Institute of Genetics and Microbiology UMR 8621 CNRS/UPS11, Orsay, France
- Venezuelan Institute of Scientific Research, Caracas, Venezuela
| | - Nino Tadumaze
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Nino Bablishvili
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Maka Akhalaia
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Kiki Tuin
- MRC-Holland, Amsterdam, The Netherlands
| | - Anja Schuitema
- KIT Biomedical Research, Royal Tropical Institute, Amsterdam, The Netherlands
| | - Stefan Panaiotov
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | | | - Todor Kantardjiev
- National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Rina de Zwaan
- Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anita Schürch
- Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Dick van Soolingen
- Tuberculosis Reference Laboratory, Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Departments of Microbiology and of Pulmonary Diseases, Radboud University Nijmegen Medical Centre/University Lung Centre Dekkerswald, Nijmegen, The Netherlands
| | - Anja van ‘t Hoog
- Amsterdam Institute of Global Health and Development, Amsterdam, The Netherlands
| | - Frank Cobelens
- Amsterdam Institute of Global Health and Development, Amsterdam, The Netherlands
| | - Rusudan Aspindzelashvili
- National Tuberculosis Reference Laboratory, National Center for Tuberculosis and Lung Diseases, Tbilisi, Georgia
| | - Christophe Sola
- Institute of Genetics and Microbiology UMR 8621 CNRS/UPS11, Orsay, France
| | - Paul Klatser
- KIT Biomedical Research, Royal Tropical Institute, Amsterdam, The Netherlands
| | - Richard Anthony
- KIT Biomedical Research, Royal Tropical Institute, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
12
|
Sun J, Xu J, Liang P, Mao Q, Huang Y, Lv X, Deng C, Liang C, de Hoog GS, Yu X. Molecular identification of Clonorchis sinensis and discrimination with other opisthorchid liver fluke species using multiple Ligation-depended Probe Amplification (MLPA). Parasit Vectors 2011; 4:98. [PMID: 21649899 PMCID: PMC3123291 DOI: 10.1186/1756-3305-4-98] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/07/2011] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Infections with the opisthorchid liver flukes Clonorchis sinensis, Opisthorchis viverrini, and O. felineus cause severe health problems globally, particularly in Southeast Asia. Early identification of the infection is essential to provide timely and appropriate chemotherapy to patients. RESULTS In this study we evaluate a PCR-based molecular identification method, Multiplex Ligation-dependent Probe Amplification (MLPA), which allows rapid and specific detection of single nucleotide acid differences between Clonorchis sinensis, Opisthorchis viverrini and O. felineus. Three probe pairs were derived from the Internally Transcribed Spacer 1 (ITS1) of three opisthorchid liver flukes using a systematic phylogenetic analysis. Specific loci were detected in all three species, yielding three amplicons with 198,172 and 152 bp, respectively, while no cross reactions were observed. A panel of 66 C. sinensis isolates was screened using MLPA. All species were positively identified, and no inhibition was observed. The detection limit was 10(3) copies of the ITS gene for the three liver flukes, or about 60 pg genomic DNA for Clonorchis sinensis. Amplification products can be detected by electrophoresis on agarose gel or in a capillary sequencer. In addition, genomic DNA of Clonorchis sinensis in fecal samples of infected rats was positively amplified by MLPA. CONCLUSION The flexibility and specificity make MLPA a potential tool for specific identification of infections by opisthorchid liver flukes in endemic areas.
Collapse
Affiliation(s)
- Jiufeng Sun
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Pei Liang
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Qiang Mao
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Xiaoli Lv
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Chuanhuan Deng
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - Chi Liang
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| | - G S de Hoog
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, The Netherlands
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine; Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University. No 74, The Second Zhongshan RD, Guangzhou, Guangdong, 510080, China
| |
Collapse
|
13
|
Zhang JM, Sun JF, Feng PY, Li XQ, Lu CM, Lu S, Cai WY, Xi LY, de Hoog GS. Rapid identification and characterization of Penicillium marneffei using multiplex ligation-dependent probe amplification (MLPA) in paraffin-embedded tissue samples. J Microbiol Methods 2011; 85:33-9. [PMID: 21277339 DOI: 10.1016/j.mimet.2011.01.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
Abstract
Penicillium marneffei infection is a deadly disease and early diagnosis leads to prompt and appropriate antifungal therapy. To develop a sensitive method to diagnose P. marneffei infection, a multiplex ligation-dependent probe amplification (MLPA) assay was adapted. This method can rapidly and specifically detect P. marneffei DNA in cultured cells and paraffin-embedded tissue samples. Three pairs of probes were designed for amplifying the internally (intergenic) transcribed spacer (ITS) region of P. marneffei rRNA using a systematic phylogenetic analysis. These three probe sets produced three amplicons of 198, 166, and 152 bp, respectively, specific for P. marneffei. In contrast, there was only one 198 bp amplicon produced for Talaromyces stipitatus, and one 152 bp amplicon for P. funiculosum, T. intermedius and T. derxii. The probes did not amplify any other reference strains. An array of 40 P. marneffei strains isolated from human patients, bamboo rat, and the local environment was tested by using MLPA, and all were positively identified. Most importantly, P. marneffei in paraffin-embedded tissue specimens from infected human patients was positively amplified by MLPA. The sensitivity and specificity of the MLPA assay could be a useful tool for prompt diagnosis, pathogen characterization, and epidemiological studies of fungal infections.
Collapse
Affiliation(s)
- Jun-Min Zhang
- Department of Dermatology, Second Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pham LC, Hoogenkamp MA, Exterkate RAM, Terefework Z, de Soet JJ, ten Cate JM, Crielaard W, Zaura E. Effects of Lactobacillus rhamnosus GG on saliva-derived microcosms. Arch Oral Biol 2010; 56:136-47. [PMID: 20971447 DOI: 10.1016/j.archoralbio.2010.09.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/21/2010] [Accepted: 09/25/2010] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The probiotic strain Lactobacillus rhamnosus GG (LGG) is shown to hamper the presence of mutans streptococci in saliva and may have positive effects on oral health. We investigated the effects of LGG on the cariogenic potential and microbial composition of saliva-derived microcosms. DESIGN Single and dual species biofilms of LGG and Streptococcus mutans, and saliva-derived microcosms with or without LGG were grown in an Active Attachment Biofilm model. The microcosms were grown on bovine dentin/enamel discs in the presence or absence of sucrose (suc+/suc-). The presence of LGG was determined by multiplex ligation-dependent probe amplification (MLPA) and real-time PCR. Mutans streptococci (MS) and total viable counts, pH of the spent medium, capacity of lactate formation and integrated mineral loss in dentin was assessed. MLPA was used for identification and relative quantification of 20 oral microorganisms in the microcosms. Principal Component Analysis was applied to MLPA data. RESULTS LGG inhibited the growth of S. mutans in dual species biofilms and did not affect the pH. LGG established in saliva-derived microcosms and reduced MS counts significantly, but did not affect pH or dentin demineralization. Simultaneous growth of the microcosms with LGG under heavy cariogenic conditions (suc+) introduced a compositional shift in the microbial community. The CFU, real-time PCR and MLPA data correlated significantly. CONCLUSION We conclude that LGG established into and inhibited the growth of MS in complex saliva-derived biofilms, but this had no significant effect on cariogenic potential of the microcosms. This suggests that other microorganisms besides MS were responsible for increased cariogenicity of sucrose-exposed biofilms.
Collapse
Affiliation(s)
- Lien Chi Pham
- Academic Centre for Dentistry Amsterdam, Division of Conservative and Preventive Dentistry, Department of Cariology, Endodontology, Pedodontology & Oral Microbiology, University of Amsterdam and VU University Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Shin GW, Hwang HS, Chung B, Jung GY. Recent developments in CE-based detection methods for food-borne pathogens. Electrophoresis 2010; 31:2137-53. [DOI: 10.1002/elps.200900682] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Wu W, Tang YW. Emerging molecular assays for detection and characterization of respiratory viruses. Clin Lab Med 2010; 29:673-93. [PMID: 19892228 PMCID: PMC7130760 DOI: 10.1016/j.cll.2009.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
This article describes several emerging molecular assays that have potential applications in the diagnosis and monitoring of respiratory viral infections. These techniques include direct nucleic acid detection by quantum dots, loop-mediated isothermal amplification, multiplex ligation-dependent probe amplification, amplification using arbitrary primers, target-enriched multiplexing amplification, pyrosequencing, padlock probes, solid and suspension microarrays, and mass spectrometry. Several of these systems already are commercially available to provide multiplex amplification and high-throughput detection and identification of a panel of respiratory viral pathogens. Further validation and implementation of such emerging molecular assays in routine clinical virology services will enhance the rapid diagnosis of respiratory viral infections and improve patient care.
Collapse
Affiliation(s)
- Wenjuan Wu
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
17
|
Deshpande A, Gans J, Graves SW, Green L, Taylor L, Kim HB, Kunde YA, Leonard PM, Li PE, Mark J, Song J, Vuyisich M, White PS. A rapid multiplex assay for nucleic acid-based diagnostics. J Microbiol Methods 2009; 80:155-63. [PMID: 20006656 DOI: 10.1016/j.mimet.2009.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/23/2009] [Accepted: 12/02/2009] [Indexed: 11/30/2022]
Abstract
We have developed a rapid (under 4 hours), multiplex, nucleic acid assay, adapted to a microsphere array detection platform. We call this assay multiplex oligonucleotide ligation-PCR (MOL-PCR). Unlike other ligation-based assays that require multiple steps, our protocol consists of a single tube reaction, followed by hybridization to a Luminex microsphere array for detection. We demonstrate the ability of this assay to simultaneously detect diverse nucleic acid signatures (e.g., unique sequences, single nucleotide polymorphisms) in a single multiplex reaction. Detection probes consist of modular components that enable target detection, probe amplification, and subsequent capture onto microsphere arrays. To demonstrate the utility of our assay, we applied it to the detection of three biothreat agents, B. anthracis, Y. pestis, and F. tularensis. Combined with the ease and robustness of this assay, the results presented here show a strong potential of our assay for use in diagnostics and surveillance.
Collapse
Affiliation(s)
- Alina Deshpande
- Decision Applications Division, Mail Stop K551, Los Alamos National Laboratory, Los Alamos, NM 87545, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|