1
|
Li Z, Wang Q, Niu Y, Wang R, Zhao W, Zhang C, Wang G, Wang K. Dynamic behavior of DNA molecules in microchannels: exploring deflective, elliptical, and spin motions induced by Saffman and Magnus forces. LAB ON A CHIP 2024; 24:3704-3717. [PMID: 38953215 DOI: 10.1039/d4lc00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Precise manipulation of individual DNA molecules entering and leaving the channel ports, as well as their smooth passage across the channel, is essential for the detection and screening of DNA molecules using nano-/micro-fluidic technologies. In this paper, by combining single-molecule fluorescence imaging and numerical simulations, the motion states of DNA molecules translocating through a microfluidic channel under the action of the applied electric field are monitored and analyzed in detail. It is found that, under certain conditions of the applied electric field DNA molecules exhibit various motion states, including translation crossing, deflection outflow, reverse outflow, reciprocal movement, and elliptical movement. Simulations indicate that, under the action of Saffman force, DNA molecules can only undergo deflective motion when they experience a velocity gradient in the microchannel flow field; and they can only undergo elliptical motion when their deflective motion is accompanied by a spin motion. In this case, the Magnus force also plays an important role. The detailed study and elucidation of the movement states, dynamic characteristics and mechanisms of DNA molecules such as the deflective and elliptical motions under the actions of Saffman and Magnus forces have helpful implications for the development of related DNA/gene nano-/microfluidic chips, and for the separation, screening and detection of DNA molecules.
Collapse
Affiliation(s)
- Zhiwei Li
- Key Laboratory of Photoelectric Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China.
| | - Qiong Wang
- Key Laboratory of Photoelectric Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China.
| | - Yong Niu
- Key Laboratory of Photoelectric Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China.
| | - Ruiyu Wang
- College of Electronic Science & Engineering, Jilin University, China
| | - Wei Zhao
- Key Laboratory of Photoelectric Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China.
| | - Chen Zhang
- Key Laboratory of Photoelectric Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China.
| | - Guiren Wang
- Mechanical Engineering Department & Biomedical Engineering Department, University of South Carolina, Columbia, SC 29208, USA
| | - Kaige Wang
- Key Laboratory of Photoelectric Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-Functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Chaudhary P, Ghosh S. Study on the Effect of a Sudden Jump in Wettability on Two-Component Liquid Flow in Sudden Contraction Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39013104 DOI: 10.1021/acs.langmuir.4c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
This study experimentally investigated the effect of wettability and sudden changes in flow area on liquid-liquid extraction operation. The wall surface wettability has been altered by connecting the glass capillary (hydrophilic) and poly(tetrafluoroethylene) (PTFE)-coated capillary (hydrophobic) together in four different arrangements. In all of the arrangements, a 2 mm inner diameter tube of 35 cm length is used upstream, while a 1 mm inner diameter tube of 35 cm length is used downstream. Acetic acid mixed with toluene and water is used as a test fluid. Various flow patterns are observed: slug, droplet, slug with the droplet, and encapsulated drop in slug. The extraction efficiency is observed to be the maximum when the hydrophobic tube is used upstream, followed by a hydrophilic tube downstream. Due to the contraction effect, the specific surface area of the slug increases from 1.6 to 2.7 times. Further numerical simulations have been run using open CFD software OpenFoam to see the inner flow physics at the maximum efficiency due to a sudden jump in wettability. The presence of a recirculating zone downstream just after the plane of area change leads to the formation of encapsulated drop and enhances circulation within the slug.
Collapse
Affiliation(s)
- Pushpender Chaudhary
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sumana Ghosh
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
3
|
Zoheir AE, Stolle C, Rabe KS. Microfluidics for adaptation of microorganisms to stress: design and application. Appl Microbiol Biotechnol 2024; 108:162. [PMID: 38252163 PMCID: PMC10803453 DOI: 10.1007/s00253-024-13011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/22/2023] [Accepted: 01/11/2024] [Indexed: 01/23/2024]
Abstract
Microfluidic systems have fundamentally transformed the realm of adaptive laboratory evolution (ALE) for microorganisms by offering unparalleled control over environmental conditions, thereby optimizing mutant generation and desired trait selection. This review summarizes the substantial influence of microfluidic technologies and their design paradigms on microbial adaptation, with a primary focus on leveraging spatial stressor concentration gradients to enhance microbial growth in challenging environments. Specifically, microfluidic platforms tailored for scaled-down ALE processes not only enable highly autonomous and precise setups but also incorporate novel functionalities. These capabilities encompass fostering the growth of biofilms alongside planktonic cells, refining selection gradient profiles, and simulating adaptation dynamics akin to natural habitats. The integration of these aspects enables shaping phenotypes under pressure, presenting an unprecedented avenue for developing robust, stress-resistant strains, a feat not easily attainable using conventional ALE setups. The versatility of these microfluidic systems is not limited to fundamental research but also offers promising applications in various areas of stress resistance. As microfluidic technologies continue to evolve and merge with cutting-edge methodologies, they possess the potential not only to redefine the landscape of microbial adaptation studies but also to expedite advancements in various biotechnological areas. KEY POINTS: • Microfluidics enable precise microbial adaptation in controlled gradients. • Microfluidic ALE offers insights into stress resistance and distinguishes between resistance and persistence. • Integration of adaptation-influencing factors in microfluidic setups facilitates efficient generation of stress-resistant strains.
Collapse
Affiliation(s)
- Ahmed E Zoheir
- Department of Genetics and Cytology, Biotechnology Research Institute, National Research Centre (NRC), 33 El Buhouth St., Dokki, Cairo, 12622, Egypt
| | - Camilla Stolle
- Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces 1 (IBG-1), Biomolecular Micro- and Nanostructures, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
4
|
Ho CMB, Sun Q, Teo AJT, Wibowo D, Gao Y, Zhou J, Huang Y, Tan SH, Zhao CX. Development of a Microfluidic Droplet-Based Microbioreactor for Microbial Cultivation. ACS Biomater Sci Eng 2020; 6:3630-3637. [DOI: 10.1021/acsbiomaterials.0c00292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Chee Meng Benjamin Ho
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Qi Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Adrian J. T. Teo
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - David Wibowo
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Yongsheng Gao
- School of Engineering, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Jun Zhou
- School of Information and Communication Technology, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Yanyi Huang
- Department of Advanced Materials and Nanotechnology, College of Engineering, Peking University, 100084 Beijing, China
| | - Say Hwa Tan
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Brisbane, QLD 4111, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
5
|
Deng C, Naler LB, Lu C. Microfluidic epigenomic mapping technologies for precision medicine. LAB ON A CHIP 2019; 19:2630-2650. [PMID: 31338502 PMCID: PMC6697104 DOI: 10.1039/c9lc00407f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Epigenomic mapping of tissue samples generates critical insights into genome-wide regulations of gene activities and expressions during normal development and disease processes. Epigenomic profiling using a low number of cells produced by patient and mouse samples presents new challenges to biotechnologists. In this review, we first discuss the rationale and premise behind profiling epigenomes for precision medicine. We then examine the existing literature on applying microfluidics to facilitate low-input and high-throughput epigenomic profiling, with emphasis on technologies enabling interfacing with next-generation sequencing. We detail assays on studies of histone modifications, DNA methylation, 3D chromatin structures and non-coding RNAs. Finally, we discuss what the future may hold in terms of method development and translational potential.
Collapse
Affiliation(s)
- Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA.
| |
Collapse
|
6
|
Feuillie C, Valotteau C, Makart L, Gillis A, Mahillon J, Dufrêne YF. Bacterial Sexuality at the Nanoscale. NANO LETTERS 2018; 18:5821-5826. [PMID: 30169045 DOI: 10.1021/acs.nanolett.8b02463] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the basic mechanisms of bacterial sexuality is an important topic in current microbiology and biotechnology. While classical methods used to study gene transfer provide information on whole cell populations, nanotechnologies offer new opportunities for analyzing the behavior of individual mating partners. We introduce an innovative atomic force microscopy (AFM) platform to study and mechanically control DNA transfer between single bacteria, focusing on the large conjugative pXO16 plasmid of the Gram-positive bacterium Bacillus thuringiensis. We demonstrate that the adhesion forces between single donor and recipient cells are very strong (∼2 nN). Using a mutant plasmid, we find that these high forces are mediated by a pXO16 aggregation locus that contains two large surface protein genes. Notably, we also show that AFM can be used to mechanically induce plasmid transfer between single partners, revealing that transfer is very fast (<15 min) and triggers major cell surface changes in transconjugant cells. We anticipate that the single-cell technology developed here will enable researchers to mechanically control gene transfer among a wide range of Gram-positive and Gram-negative bacterial species and to understand the molecular forces involved. Also, the method could be useful in nanomedicine for the design of antiadhesion compounds capable of preventing intimate cell-cell contacts, therefore providing a means to control the resistance and virulence of bacterial pathogens.
Collapse
Affiliation(s)
- Cécile Feuillie
- Louvain Institute of Biomolecular Science and Technology , Université catholique de Louvain , Croix du Sud, 4-5 , B-1348 Louvain-la-Neuve , Belgium
| | - Claire Valotteau
- Louvain Institute of Biomolecular Science and Technology , Université catholique de Louvain , Croix du Sud, 4-5 , B-1348 Louvain-la-Neuve , Belgium
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute , Université catholique de Louvain , B-1348 Louvain-la-Neuve , Belgium
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute , Université catholique de Louvain , B-1348 Louvain-la-Neuve , Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute , Université catholique de Louvain , B-1348 Louvain-la-Neuve , Belgium
| | - Yves F Dufrêne
- Louvain Institute of Biomolecular Science and Technology , Université catholique de Louvain , Croix du Sud, 4-5 , B-1348 Louvain-la-Neuve , Belgium
- Walloon Excellence in Life sciences and Biotechnology (WELBIO) , B-1300 Wavre , Belgium
| |
Collapse
|
7
|
Yang Y, Liu T, Tao K, Chang H. Generating Electricity on Chips: Microfluidic Biofuel Cells in Perspective. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b00037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Tianyu Liu
- Department
of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States of America
| | | | | |
Collapse
|
8
|
Abstract
Isolated microfluidic stagnation points – formed within microfluidic interfaces – have come a long way as a tool for characterizing materials, manipulating micro particles, and generating confined flows and localized chemistries.
Collapse
Affiliation(s)
- Ayoola T. Brimmo
- Division of Engineering
- New York University Abu Dhabi
- Abu Dhabi
- UAE
- Tandon School of Engineering
| | - Mohammad A. Qasaimeh
- Division of Engineering
- New York University Abu Dhabi
- Abu Dhabi
- UAE
- Tandon School of Engineering
| |
Collapse
|
9
|
|
10
|
Lalanne-Aulet D, Piacentini A, Guillot P, Marchal P, Moreau G, Colin A. Multiscale study of bacterial growth: Experiments and model to understand the impact of gas exchange on global growth. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:052706. [PMID: 26651722 DOI: 10.1103/physreve.92.052706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Indexed: 06/05/2023]
Abstract
Using a millifluidics and macroscale setup, we study quantitatively the impact of gas exchange on bacterial growth. In millifluidic environments, the permeability of the incubator materials allows an unlimited oxygen supply by diffusion. Moreover, the efficiency of diffusion at small scales makes the supply instantaneous in comparison with the cell division time. In hermetic closed vials, the amount of available oxygen is low. The growth curve has the same trend but is quantitatively different from the millifluidic situation. The analysis of all the data allows us to write a quantitative modeling enabling us to capture the entire growth process.
Collapse
Affiliation(s)
| | | | - Pierre Guillot
- University of Bordeaux, CNRS, Solvay, LOF UMR 5258, France
| | - Philippe Marchal
- Solvay, Centre de Recherches de Lyon, 85 rue des Frères Perret, Saint-Fons, France
| | - Gilles Moreau
- Solvay, Centre de Recherches de Lyon, 85 rue des Frères Perret, Saint-Fons, France
| | - Annie Colin
- ESPCI, CNRS, SIMM UMR 7615, 11 rue Vauquelin, 75005 Paris, France
| |
Collapse
|
11
|
Rotary-based platform with disposable fluidic modules for automated isolation of nucleic acids. Biomed Microdevices 2015; 17:18. [DOI: 10.1007/s10544-014-9920-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Zhou QJ, Wang L, Chen J, Wang RN, Shi YH, Li CH, Zhang DM, Yan XJ, Zhang YJ. Development and evaluation of a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP) for rapid and simultaneous detection of ten pathogenic bacteria in aquatic animals. J Microbiol Methods 2014; 104:26-35. [PMID: 24954661 DOI: 10.1016/j.mimet.2014.06.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/09/2014] [Accepted: 06/11/2014] [Indexed: 01/26/2023]
Abstract
Rapid, low-cost, and user-friendly strategies are urgently needed for early disease diagnosis and timely treatment, particularly for on-site screening of pathogens in aquaculture. In this study, we successfully developed a real-time fluorogenic loop-mediated isothermal amplification assay integrated on a microfluidic disc chip (on-chip LAMP), which was capable of simultaneously detecting 10 pathogenic bacteria in aquatic animals, i.e., Nocardia seriolae, Pseudomonas putida, Streptococcus iniae, Vibrio alginolyticus, Vibrio anguillarum, Vibrio fluvialis, Vibrio harveyi, Vibrio parahaemolyticus, Vibrio rotiferianus, and Vibrio vulnificus. The assay provided a nearly-automated approach, with only a single pipetting step per chip for sample dispensing. This technique could achieve limits of detection (LOD) ranging from 0.40 to 6.42pg per 1.414μL reaction in less than 30 min. The robust reproducibility was demonstrated by a little variation among duplications for each bacterium with the coefficient of variation (CV) for time to positive (Tp) value less than 0.10. The clinical sensitivity and specificity of this on-chip LAMP assay in detecting field samples were 96.2% and 93.8% by comparison with conventional microbiological methods. Compared with other well-known techniques, on-chip LAMP assay provides low sample and reagent consumption, ease-of-use, accelerated analysis, multiple bacteria and on-site detection, and high reproducibility, indicating that such a technique would be applicable for on-site detection and routine monitoring of multiple pathogens in aquaculture.
Collapse
Affiliation(s)
- Qian-Jin Zhou
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Ningbo Branch of National Engineering Research Center for Beijing Biochip Technology, Ningbo University, Ningbo 315211, PR China
| | - Lei Wang
- CapitalBio Corporation, 18 Life Science Parkway, Changping District, Beijing 102206, PR China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Ningbo Branch of National Engineering Research Center for Beijing Biochip Technology, Ningbo University, Ningbo 315211, PR China.
| | - Rui-Na Wang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Yu-Hong Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Ningbo Branch of National Engineering Research Center for Beijing Biochip Technology, Ningbo University, Ningbo 315211, PR China
| | - Chang-Hong Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China; Ningbo Branch of National Engineering Research Center for Beijing Biochip Technology, Ningbo University, Ningbo 315211, PR China
| | - De-Min Zhang
- Ningbo Branch of National Engineering Research Center for Beijing Biochip Technology, Ningbo University, Ningbo 315211, PR China
| | - Xiao-Jun Yan
- Ningbo Branch of National Engineering Research Center for Beijing Biochip Technology, Ningbo University, Ningbo 315211, PR China
| | - Yan-Jun Zhang
- Center for Disease Control and Prevention of Zhejiang Province, Hangzhou 310051, PR China
| |
Collapse
|
13
|
Fritz JV, Desai MS, Shah P, Schneider JG, Wilmes P. From meta-omics to causality: experimental models for human microbiome research. MICROBIOME 2013; 1:14. [PMID: 24450613 PMCID: PMC3971605 DOI: 10.1186/2049-2618-1-14] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/19/2013] [Indexed: 05/04/2023]
Abstract
Large-scale 'meta-omic' projects are greatly advancing our knowledge of the human microbiome and its specific role in governing health and disease states. A myriad of ongoing studies aim at identifying links between microbial community disequilibria (dysbiosis) and human diseases. However, due to the inherent complexity and heterogeneity of the human microbiome, cross-sectional, case-control and longitudinal studies may not have enough statistical power to allow causation to be deduced from patterns of association between variables in high-resolution omic datasets. Therefore, to move beyond reliance on the empirical method, experiments are critical. For these, robust experimental models are required that allow the systematic manipulation of variables to test the multitude of hypotheses, which arise from high-throughput molecular studies. Particularly promising in this respect are microfluidics-based in vitro co-culture systems, which allow high-throughput first-pass experiments aimed at proving cause-and-effect relationships prior to testing of hypotheses in animal models. This review focuses on widely used in vivo, in vitro, ex vivo and in silico approaches to study host-microbial community interactions. Such systems, either used in isolation or in a combinatory experimental approach, will allow systematic investigations of the impact of microbes on the health and disease of the human host. All the currently available models present pros and cons, which are described and discussed. Moreover, suggestions are made on how to develop future experimental models that not only allow the study of host-microbiota interactions but are also amenable to high-throughput experimentation.
Collapse
Affiliation(s)
- Joëlle V Fritz
- Eco-Systems Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Avenue des Hauts-Fourneaux, 7, Esch-sur-Alzette, L-4362, Luxembourg
| | - Mahesh S Desai
- Eco-Systems Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Avenue des Hauts-Fourneaux, 7, Esch-sur-Alzette, L-4362, Luxembourg
| | - Pranjul Shah
- Eco-Systems Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Avenue des Hauts-Fourneaux, 7, Esch-sur-Alzette, L-4362, Luxembourg
| | - Jochen G Schneider
- Translational & Experimental Research Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Avenue des Hauts-Fourneaux, 7, Esch-sur-Alzette, L-4362, Luxembourg
- Department of Medicine II, Saarland University Medical Center, Kirrberger Str., Homburg/Saar, D-66421, Germany
| | - Paul Wilmes
- Eco-Systems Biology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Avenue des Hauts-Fourneaux, 7, Esch-sur-Alzette, L-4362, Luxembourg
| |
Collapse
|
14
|
Nazzaro F, Fratianni F, Coppola R. Microtechnology and nanotechnology in food science. FOOD ENGINEERING SERIES 2012. [DOI: 10.1007/978-1-4614-1587-9_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
DNA technologies: what's next applied to microbiology research? Antonie van Leeuwenhoek 2010; 98:249-62. [PMID: 20593236 DOI: 10.1007/s10482-010-9480-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 06/22/2010] [Indexed: 10/19/2022]
Abstract
This perspective discusses current DNA technologies used in basic and applied microbiology research and speculates on possible new future technologies. DNA remains one of the most fascinating molecules known to humans and will continue to revolutionize many areas ranging from medicine, food and forensics to robotics and new industrial bioproducts/biofuel from waste materials. What's next with DNA is not always obvious, but history shows the international microbiology research community will readily adopt it.
Collapse
|
16
|
Ahmed T, Shimizu TS, Stocker R. Microfluidics for bacterial chemotaxis. Integr Biol (Camb) 2010; 2:604-29. [DOI: 10.1039/c0ib00049c] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|