1
|
Reta MA, Maningi NE, Fourie PB. Patterns and profiles of drug resistance-conferring mutations in Mycobacterium tuberculosis genotypes isolated from tuberculosis-suspected attendees of spiritual holy water sites in Northwest Ethiopia. Front Public Health 2024; 12:1356826. [PMID: 38566794 PMCID: PMC10985251 DOI: 10.3389/fpubh.2024.1356826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose This study examined the patterns and frequency of genetic changes responsible for resistance to first-line (rifampicin and isoniazid), fluoroquinolones, and second-line injectable drugs in drug-resistant Mycobacterium tuberculosis (MTB) isolated from culture-positive pulmonary tuberculosis (PTB) symptomatic attendees of spiritual holy water sites (HWSs) in the Amhara region. Patients and methods From June 2019 to March 2020, a cross-sectional study was carried out. A total of 122 culture-positive MTB isolates from PTB-suspected attendees of HWSs in the Amhara region were evaluated for their drug resistance profiles, and characterized gene mutations conferring resistance to rifampicin (RIF), isoniazid (INH), fluoroquinolones (FLQs), and second-line injectable drugs (SLIDs) using GenoType®MTBDRplus VER2.0 and GenoType®MTBDRsl VER2.0. Drug-resistant MTB isolates were Spoligotyped following the manufacturer's protocol. Results Genetic changes (mutations) responsible for resistance to RIF, INH, and FLQs were identified in 15/122 (12.3%), 20/122 (16.4%), and 5/20 (25%) of MTB isolates, respectively. In RIF-resistant, rpoB/Ser531Lue (n = 12, 80%) was most frequent followed by His526Tyr (6.7%). Amongst INH-resistant isolates, katG/Ser315Thr1 (n = 19, 95%) was the most frequent. Of 15 MDR-TB, the majority (n = 12, 80%) isolates had mutations at both rpoB/Ser531Leu and katG/Ser315Thr1. All 20 INH and/or RIF-resistant isolates were tested with the MTBDRsl VER 2.0, yielding 5 FLQs-resistant isolates with gene mutations at rpoB/Ser531Lue, katG/Ser315Thr1, and gyrA/Asp94Ala genes. Of 20 Spoligotyped drug-resistant MTB isolates, the majority (n = 11, 55%) and 6 (30%) were SIT149/T3-ETH and SIT21/CAS1-Kili sublineages, respectively; and they were any INH-resistant (mono-hetero/multi-). Of 15 RIF-resistant (RR/MDR-TB) isolates, 7 were SIT149/T3-ETH, while 6 were SIT21/CAS1-Kili sublineages. FLQ resistance was detected in four SIT21/CAS1-Kili lineages. Conclusion In the current study, the most common gene mutations responsible for resistance to INH, RIF, and FLQs were identified. SIT149/T3-ETH and SIT21/CAS1-Kili constitute the majority of drug-resistant TB (DR-TB) isolates. To further understand the complete spectrum of genetic changes/mutations and related genotypes, a sequencing technology is warranted.
Collapse
Affiliation(s)
- Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Nontuthuko Excellent Maningi
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Traoré AN, Rikhotso MC, Mphaphuli MA, Patel SM, Mahamud HA, Kachienga LO, Kabue JP, Potgieter N. Isoniazid and Rifampicin Resistance-Conferring Mutations in Mycobacterium tuberculosis Isolates from South Africa. Pathogens 2023; 12:1015. [PMID: 37623975 PMCID: PMC10458554 DOI: 10.3390/pathogens12081015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), remains a significant global health issue, with high morbidity and mortality rates. The emergence of drug-resistant strains, particularly multidrug-resistant TB (MDR-TB), poses difficult challenges to TB control efforts. This comprehensive review and meta-analysis investigated the prevalence of and molecular insights into isoniazid (INH) and rifampicin (RIF) resistance-conferring mutations in M. tb isolates from South Africa. Through systematic search and analysis of 11 relevant studies, we determined the prevalence of gene mutations associated with RIF and INH resistance, such as rpoB, katG, and inhA. The findings demonstrated a high prevalence of specific mutations, including S450L in rpoB, and S315T, which are linked to resistance against RIF and INH, respectively. These results contribute to the understanding of drug resistance mechanisms and provide valuable insights for the development of targeted interventions against drug-resistant TB.
Collapse
Affiliation(s)
- Afsatou Ndama Traoré
- Department of Biochemistry and Microbiology, Faculty of Sciences, Engineering & Agriculture, University of Venda, Thohoyandou 0950, South Africa; (M.C.R.); (M.A.M.); (S.M.P.); (H.A.M.); (L.O.K.); (J.-P.K.); (N.P.)
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Reta MA, Tamene BA, Abate BB, Mensah E, Maningi NE, Fourie PB. Mycobacterium tuberculosis Drug Resistance in Ethiopia: An Updated Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:tropicalmed7100300. [PMID: 36288041 PMCID: PMC9611116 DOI: 10.3390/tropicalmed7100300] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/10/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022] Open
Abstract
Background: Tuberculosis (TB) remains a significant global public health issue, despite advances in diagnostic technologies, substantial global efforts, and the availability of effective chemotherapies. Mycobacterium tuberculosis, a species of pathogenic bacteria resistant to currently available anti-TB drugs, is on the rise, threatening national and international TB-control efforts. This systematic review and meta-analysis aims to estimate the pooled prevalence of drug-resistant TB (DR-TB) in Ethiopia. Materialsand Methods: A systematic literature search was undertaken using PubMed/MEDLINE, HINARI, the Web of Science, ScienceDirect electronic databases, and Google Scholar (1 January 2011 to 30 November 2020). After cleaning and sorting the records, the data were analyzed using STATA 11. The study outcomes revealed the weighted pooled prevalence of any anti-tuberculosis drug resistance, any isoniazid (INH) and rifampicin (RIF) resistance, monoresistance to INH and RIF, and multidrug-resistant TB (MDR-TB) in newly diagnosed and previously treated patients with TB. Results: A total of 24 studies with 18,908 patients with TB were included in the final analysis. The weighted pooled prevalence of any anti-TB drug resistance was 14.25% (95% confidence interval (CI): 7.05–21.44%)), whereas the pooled prevalence of any INH and RIF resistance was found in 15.62% (95%CI: 6.77–24.47%) and 9.75% (95%CI: 4.69–14.82%) of patients with TB, respectively. The pooled prevalence for INH and RIF-monoresistance was 6.23% (95%CI: 4.44–8.02%) and 2.33% (95%CI: 1.00–3.66%), respectively. MDR-TB was detected in 2.64% (95%CI: 1.46–3.82%) of newly diagnosed cases and 11.54% (95%CI: 2.12–20.96%) of retreated patients with TB, while the overall pooled prevalence of MDR-TB was 10.78% (95%CI: 4.74–16.83%). Conclusions: In Ethiopia, anti-tuberculosis drug resistance is widespread. The estimated pooled prevalence of INH and RIF-monoresistance rates were significantly higher in this review than in previous reports. Moreover, MDR-TB in newly diagnosed cases remained strong. Thus, early detection of TB cases, drug-resistance testing, proper and timely treatment, and diligent follow-up of TB patients all contribute to the improvement of DR-TB management and prevention. Besides this, we urge that a robust, routine laboratory-based drug-resistance surveillance system be implemented in the country.
Collapse
Affiliation(s)
- Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof 0084, South Africa
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia P.O. Box 400, Ethiopia
- Correspondence:
| | - Birhan Alemnew Tamene
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, Woldia P.O. Box 400, Ethiopia
| | - Biruk Beletew Abate
- Department of Nursing, College of Health Sciences, Woldia University, Woldia P.O. Box 400, Ethiopia or
| | - Eric Mensah
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof 0084, South Africa
| | - Nontuthuko Excellent Maningi
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Durban 4041, South Africa
| | - P. Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof 0084, South Africa
| |
Collapse
|
4
|
Mota DS, Guimarães JM, Gandarilla AMD, Filho JCBS, Brito WR, Mariúba LAM. Recombinase polymerase amplification in the molecular diagnosis of microbiological targets and its applications. Can J Microbiol 2022; 68:383-402. [PMID: 35394399 DOI: 10.1139/cjm-2021-0329] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the introduction of the polymerase chain reaction (PCR) technique in 1983, nucleic acid amplification has permeated all fields of biological science, particularly clinical research. Despite its importance, PCR has been restricted to specialized centers and its use in laboratories with few resources is limited. In recent decades, there has been a notable increase in the development of new isothermal technologies for molecular diagnosis with the hope of overcoming the traditional limitations of the laboratory. Among these technologies, recombinase polymerase amplification (RPA) has a wide application potential because it does not require thermocyclers and has high sensitivity, specificity, simplicity, and detection speed. This technique has been used for DNA and RNA amplification in various pathogenic organisms such as viruses, bacteria, and parasites. In addition, RPA has been successfully implemented in different detection strategies, making it a promising alternative for performing diagnoses in environments with scarce resources and a high burden of infectious diseases. In this study, we present a review of the use of RPA in clinical settings and its implementation in various research areas.
Collapse
Affiliation(s)
- D S Mota
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil
| | - J M Guimarães
- Centro Multiusuário para Análises de Fenômenos Biomédicos, Universidade do Estado do Amazonas (UEA), Manaus, AM, 69065-00, Brazil
| | - A M D Gandarilla
- Departamento de Química, ICE, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil.,Laboratório de Bioeletrônica e Eletroquímica, LABEL, Central Analítica, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil
| | - J C B S Filho
- Departamento de Química, ICE, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil.,Laboratório de Bioeletrônica e Eletroquímica, LABEL, Central Analítica, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil
| | - W R Brito
- Departamento de Química, ICE, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil.,Laboratório de Bioeletrônica e Eletroquímica, LABEL, Central Analítica, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil
| | - L A M Mariúba
- Programa de Pós-graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69067-005, Brazil.,Fundação Oswaldo Cruz, Fiocruz, Instituto Leônidas e Maria Deane (ILMD-FIOCRUZ), Manaus, AM, 69057-070, Brazil.,Programa de Pós-Graduação em Biotecnologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, AM, 69057-070, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Fundação Oswaldo Cruz, Fiocruz, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
| |
Collapse
|
5
|
Reta MA, Alemnew B, Abate BB, Fourie PB. Prevalence of drug resistance-conferring mutations associated with isoniazid- and rifampicin-resistant Mycobacterium tuberculosis in Ethiopia: a systematic review and meta-analysis. J Glob Antimicrob Resist 2021; 26:207-218. [PMID: 34214698 DOI: 10.1016/j.jgar.2021.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 05/26/2021] [Accepted: 06/06/2021] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVES Globally, the incidence and mortality of tuberculosis (TB) are declining; however, low detection of drug-resistant disease threatens to reverse current progress toward global TB control. Multiple rapid molecular diagnostic tests have recently been developed to detect genetic mutations in Mycobacterium tuberculosis (Mtb) known to confer drug resistance. However, their utility depends on the frequency and distribution of resistance-associated mutations in the pathogen population. This review aimed to assess the prevalence of gene mutations associated with rifampicin (RIF)- and isoniazid (INH)-resistant Mtb in Ethiopia. METHODS We searched the literature in PubMed/MEDLINE, Web of Science, Scopus and Cochrane Library. Data analysis was conducted in Stata 11. RESULTS Totally, 909 (95.8%) of 949 INH-resistant Mtb isolates had detectable gene mutations: 95.8% in katG315 and 5.9% in the inhA promoter region. Meta-analysis resulted in an estimated pooled prevalence of katGMUT1(S315T1) of 89.2% (95% CI 81.94-96.43%) and a pooled prevalence of inhAMUT1(C15T) of 77.5% (95% CI 57.84-97.13%). Moreover, 769 (90.8%) of 847 RIF-resistant strains had detectable rpoB gene mutations. Meta-analysis resulted in a pooled prevalence of rpoBMUT3(S531L) of 74.2% (95% CI 66.39-82.00%). CONCLUSION RIF-resistant Mtb were widespread, particularly those harbouring rpoB(S531L) mutation. Similarly, INH-resistant Mtb with katG(S315T1) and inhA(C15T) mutations were common. Tracking S531L, S315T1 and C15T mutations among RIF- and INH-resistant isolates, respectively, would be diagnostically and epidemiologically valuable. Rapid diagnosis of RIF- and INH-resistant Mtb would expedite modification of TB treatment regimens, and proper timely infection control interventions could reduce the risk of development and transmission of multidrug-resistant TB.
Collapse
Affiliation(s)
- Melese Abate Reta
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia.
| | - Birhan Alemnew
- Department of Medical Laboratory Sciences, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - Biruk Beletew Abate
- Department of Nursing, College of Health Sciences, Woldia University, Woldia, Ethiopia
| | - P Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Antibiotic resistance of Mycobacterium tuberculosis complex in Africa: A systematic review of current reports of molecular epidemiology, mechanisms and diagnostics. J Infect 2019; 79:550-571. [DOI: 10.1016/j.jinf.2019.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/13/2019] [Indexed: 12/11/2022]
|
7
|
Javed H, Bakuła Z, Pleń M, Hashmi HJ, Tahir Z, Jamil N, Jagielski T. Evaluation of Genotype MTBDR plus and MTBDR sl Assays for Rapid Detection of Drug Resistance in Extensively Drug-Resistant Mycobacterium tuberculosis Isolates in Pakistan. Front Microbiol 2018; 9:2265. [PMID: 30319577 PMCID: PMC6169422 DOI: 10.3389/fmicb.2018.02265] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Pakistan ranks 5th among the world's highest tuberculosis (TB) burden countries alongside the 6th among countries with the highest burden of drug-resistant TB, including multi-drug resistant (MDR)-TB. Methods for rapid and reliable drug susceptibility testing (DST) are prerequisite for the prompt institution of effective anti-TB treatment. The aim of this study was to evaluate the efficiency of Genotype MTBDRplus and MTBDRsl assays for the detection of MDR and (pre-) extensively drug-resistant (XDR-TB) isolates in Pakistan. The study included 47 pre-XDR and 6 XDR-TB isolates, recovered from 53 patients from Pakistan. Conventional DST was performed using the standard 1% proportion method on the Löwenstein-Jensen medium. For molecular determination of drug resistance, GenoType MTBDRplus and GenoType MTBDRsl assays (Hain Lifescience, Germany) were used. To evaluate discrepancies between conventional and molecular DST results, mutation profiling was performed by amplifying and sequencing seven genetic loci, i.e., katG, inhA, and mabA-inhA promoter, rpoB, gyrA, embB, rrs. The sensitivity of Genotype MTBDRplus was 71.7% for isoniazid (INH) and 79.2% for rifampicin (RIF). Sequence analysis revealed non-synonymous mutations in 93.3 and 27.3% of isolates phenotypically resistant to INH and RIF, respectively, albeit susceptible when tested by GenoType MTBDRplus. GenoType MTBDRsl had a sensitivity of 73.6, 64.7, 20, 25, and 100% for the detection of fluoroquinolones, ethambutol, kanamycin, amikacin, and capreomycin resistance, respectively. Upon sequencing, mutations were detected in 20, 77.8%, and all isolates phenotypically resistant to aminoglycosides, ethambutol, and fluoroquinolones, respectively, yet declared as susceptible with GenoType MTBDRsl. Low sensitivities seriously impede the large-scale application of the Genotype MTBDRplus and MTBDRsl assays. Unless further optimized, the currently available line-probe assays should rather be auxiliary to the conventional, phenotype-based methods in the detection of MDR- and XDR-TB in Pakistan.
Collapse
Affiliation(s)
- Hasnain Javed
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Zofia Bakuła
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Małgorzata Pleń
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Hafiza Jawairia Hashmi
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | | | - Nazia Jamil
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Tomasz Jagielski
- Department of Applied Microbiology, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
8
|
Saravanan M, Niguse S, Abdulkader M, Tsegay E, Hailekiros H, Gebrekidan A, Araya T, Pugazhendhi A. Review on emergence of drug-resistant tuberculosis (MDR & XDR-TB) and its molecular diagnosis in Ethiopia. Microb Pathog 2018; 117:237-242. [PMID: 29486274 DOI: 10.1016/j.micpath.2018.02.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 01/06/2023]
Abstract
Tuberculosis (TB) remains a major global health problem and ranks as the second leading cause of death among deaths caused by infectious diseases worldwide. Although the availability of short-course regimens as first-line anti-tuberculosis drugs, the emergence of drug-resistant Mycobacterium tuberculosis strains pose a major challenge to the prevention and control efforts of national tuberculosis programs (NTPs). M. tuberculosis changes its cellular environment with the mechanisms that have been evolved since prehistoric times. The interactions between the bacteria and the host environment have been studied well. However, the studies at molecular level began to emerge recently including expression profiling of micro RNA (miRNA) and literature survey revealed that researchers find more information about their regulatory role in biological processes including immune response to infectious agents like mycobacteria. In developing countries, including Ethiopia, the burden of tuberculosis and or drug resistance profile of M. tuberculosis remains largely unexplored, mainly due to lack of quality controlled second-line laboratory tests and also lack of knowledge on molecular diagnostics. This review describes the disease etiology, pathogenesis, epidemiology, molecular mechanism and advanced molecular diagnostics for precision MDR-TB diagnosis.
Collapse
Affiliation(s)
- Muthupandian Saravanan
- Department of Medical Microbiology and Immunology, School of Medicine, College of Health Science, Mekelle University, Mekelle 1871, Ethiopia.
| | - Selam Niguse
- Department of Medical Microbiology and Immunology, School of Medicine, College of Health Science, Mekelle University, Mekelle 1871, Ethiopia
| | - Mahmud Abdulkader
- Department of Medical Microbiology and Immunology, School of Medicine, College of Health Science, Mekelle University, Mekelle 1871, Ethiopia
| | - Ephrem Tsegay
- Department of Medical Microbiology and Immunology, School of Medicine, College of Health Science, Mekelle University, Mekelle 1871, Ethiopia
| | - Haftamu Hailekiros
- Department of Medical Microbiology and Immunology, School of Medicine, College of Health Science, Mekelle University, Mekelle 1871, Ethiopia
| | - Atsbeha Gebrekidan
- Department of Medical Microbiology and Immunology, School of Medicine, College of Health Science, Mekelle University, Mekelle 1871, Ethiopia
| | - Tadele Araya
- Department of Medical Microbiology and Immunology, School of Medicine, College of Health Science, Mekelle University, Mekelle 1871, Ethiopia
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
9
|
Tang YW, Stratton CW. Interpretation and Relevance of Advanced Technique Results. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2018. [PMCID: PMC7120226 DOI: 10.1007/978-3-319-95111-9_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Advanced techniques in the field of diagnostic microbiology have made amazing progress over the past 25 years due largely to a technological revolution in the molecular aspects of microbiology [1, 2]. In particular, rapid molecular methods for nucleic acid amplification and characterization combined with automation in the clinical microbiology laboratory as well as user-friendly software and robust laboratory informatics systems have significantly broadened the diagnostic capabilities of modern clinical microbiology laboratories. Molecular methods such as nucleic acid amplification tests (NAATs) rapidly are being developed and introduced in the clinical laboratory setting [3, 4]. Indeed, every section of the clinical microbiology laboratory, including bacteriology, mycology, mycobacteriology, parasitology, and virology, has benefited from these advanced techniques. Because of the rapid development and adaptation of these molecular techniques, the interpretation and relevance of the results produced by such molecular methods continues to lag behind. The purpose of this chapter is to review, update, and discuss the interpretation and relevance of results produced by these advanced molecular techniques.
Collapse
Affiliation(s)
- Yi-Wei Tang
- Departments of Laboratory Medicine and Internal Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Charles W. Stratton
- Department of Pathology, Microbiology and Immunology and Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
10
|
Kumaran MS, Narang T, Jitendriya M, Tirumale R, Manjunath S, Savio J. Cutaneous Squamous Cell Carcinoma in Lupus Vulgaris Caused by Drug Resistant Mycobacterium Tuberculosis. Indian Dermatol Online J 2017; 8:257-260. [PMID: 28761842 PMCID: PMC5518577 DOI: 10.4103/2229-5178.209604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tuberculosis (TB) is still a major public health problem in the world, with many factors contributing to this burden, including poor living conditions, overcrowding, poverty, malnutrition, illiteracy, and rapid spread of human immunodeficiency virus infection. Cutaneous tuberculosis is a less common form of extrapulmonary tuberculosis, and in this paucibacillary form the diagnosis depends on histopathology, tuberculin positivity, and response to treatment. The diagnosis is even more difficult in cases with drug resistant Mycobacterium tuberculosis due to lack of awareness and lack of facilities to diagnose drug resistant tuberculosis. In this article, we describe an unusual case of multidrug resistant lupus vulgaris (LV), in a 34-year-old male who responded to anti-tubercular treatment (ATT) initially, but developed recurrent disease which failed to respond to standard four-drug ATT; subsequently, tissue culture showed growth of multidrug resistant M. tuberculosis. Subsequently, he also developed cutaneous squamous cell carcinoma. This article aims to exemplify a grave complication that can occur in long-standing case of LV, the limitations faced by clinicians in developing countries where tuberculosis is endemic, and classical methods of proving drug resistance are generally unavailable or fail.
Collapse
Affiliation(s)
- Muthu S Kumaran
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Tarun Narang
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhukara Jitendriya
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajalakshmi Tirumale
- Department of Pathology, St John Medical College and Hospital, Bengaluru, Karnataka, India
| | - Suraj Manjunath
- Department of Oncosurgery, St John Medical College and Hospital, Bengaluru, Karnataka, India
| | - Jayanthi Savio
- Department of Microbiology, St John Medical College and Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
11
|
Omar SV, Peters RPH, Ismail NA, Jonkman K, Dreyer AW, Said HM, Gwala T, Ismail N, Fourie PB. Field evaluation of a novel preservation medium to transport sputum specimens for molecular detection of Mycobacterium tuberculosis in a rural African setting. Trop Med Int Health 2016; 21:776-82. [PMID: 27098085 DOI: 10.1111/tmi.12701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES To assess the performance of an innovative method of transporting sputum to centralised facilities for molecular detection of Mycobacterium tuberculosis: using a swab to inoculate sputum in a transport medium, PrimeStore(®) Molecular Transport Medium (PS-MTM). METHODS Two sputum specimens were obtained from suspected patients with tuberculosis (TB) at rural healthcare facilities in South Africa. A swab was taken from each specimen and placed into PS-MTM, prior to it being processed by either liquid culture or Xpert MTB/RIF assay (Xpert). RESULTS A total of 141 patients (including 47 with laboratory-confirmed TB) were included in this analysis. M. tuberculosis was detected at 29% by culture and 29% by Xpert, whereas 31% tested positive by IS6110 real-time PCR of PS-MTM from the culture and 36% from the Xpert-paired specimen. Concordance between the method under evaluation with culture was 82% (McNemar, P = 0.55) and 84% (McNemar, P = 0.05) for Xpert. Stratified by culture result, the detection rate by IS6110 real-time PCR of PS-MTM was similar to Xpert for patients with positive culture (P = 0.32), but significantly higher if culture was negative (P = 0.008). CONCLUSIONS These results suggest that swab collection of sputum into PS-MTM for transport is a promising method for diagnosis of TB in rural healthcare settings, thereby potentially improving the options available for molecular diagnosis of TB in countries incapable of applying decentralised high-tech molecular testing.
Collapse
Affiliation(s)
- Shaheed V Omar
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Centre for Tuberculosis, National TB Reference Laboratory, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Remco P H Peters
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Anova Health Institute, Johannesburg, South Africa
| | - Nazir A Ismail
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.,Centre for Tuberculosis, National TB Reference Laboratory, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | | | - Andries W Dreyer
- Centre for Tuberculosis, National TB Reference Laboratory, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Halima M Said
- Centre for Tuberculosis, National TB Reference Laboratory, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Thabisile Gwala
- Centre for Tuberculosis, National TB Reference Laboratory, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Nabila Ismail
- Centre for Tuberculosis, National TB Reference Laboratory, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - P Bernard Fourie
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
12
|
Peng J, Yu X, Cui Z, Xue W, Luo Z, Wen Z, Liu M, Jiang D, Zheng H, Wu H, Zhang S, Li Y. Multi-Fluorescence Real-Time PCR Assay for Detection of RIF and INH Resistance of M. tuberculosis. Front Microbiol 2016; 7:618. [PMID: 27199947 PMCID: PMC4850356 DOI: 10.3389/fmicb.2016.00618] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/14/2016] [Indexed: 11/17/2022] Open
Abstract
Background: Failure to early detect multidrug-resistant tuberculosis (MDR-TB) results in treatment failure and poor clinical outcomes, and highlights the need to rapidly detect resistance to rifampicin (RIF) and isoniazid (INH). Methods: In Multi-Fluorescence quantitative Real-Time PCR (MF-qRT-PCR) assay, 10 probes labeled with four kinds of fluorophores were designed to detect the mutations in regions of rpoB, katG, mabA-inhA, oxyR-ahpC, and rrs. The efficiency of MF-qRT-PCR assay was tested using 261 bacterial isolates and 33 clinical sputum specimens. Among these samples, 227 Mycobacterium tuberculosis isolates were analyzed using drug susceptibility testing (DST), DNA sequencing and MF-qRT-PCR assay. Results: Compared with DST, MF-qRT-PCR sensitivity and specificity for RIF-resistance were 94.6 and 100%, respectively. And the detection sensitivity and specificity for INH-resistance were 85.9 and 95.3%, respectively. Compared with DNA sequencing, the sensitivity and specificity of our assay were 97.2 and 100% for RIF-resistance and 97.9 and 96.4% for INH-resistance. Compared with Phenotypic strain identification, MF-qRT-PCR can distinguish 227 M. tuberculosis complexes (MTC) from 34 Non-tuberculous mycobacteria (NTM) isolates with 100% accuracy rate. Conclusions: MF-qRT-PCR assay was an efficient, accurate, reliable, and easy-operated method for detection of RIF and INH-resistance, and distinction of MTC and NTM of clinical isolates.
Collapse
Affiliation(s)
- Jingfu Peng
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University Shanghai, China
| | - Xiaoli Yu
- Department of Biotechnology, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University Wuhan, China
| | - Zhenling Cui
- Shanghai Key Laboratory of Tuberculosis, Medical School, Shanghai Pulmonary Hospital, Tongji University Shanghai, China
| | - Wenfei Xue
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University Shanghai, China
| | - Ziyi Luo
- The Third People's Hospital of Shenzhen Shenzhen, China
| | - Zilu Wen
- Department of Biotechnology, School of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University Wuhan, China
| | - Minghua Liu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University Shanghai, China
| | - Danqing Jiang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University Shanghai, China
| | - Heping Zheng
- Haoding Technology Limited Company Shenzhen, China
| | - Hai Wu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University Shanghai, China
| | - Shulin Zhang
- Department of Immunology and Medical Microbiology, School of Medicine, Shanghai Jiao Tong University Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Science, Fudan University Shanghai, China
| |
Collapse
|
13
|
Veigas B, Fortunato E, Baptista PV. Mobile based gold nanoprobe TB diagnostics for point-of-need. Methods Mol Biol 2015; 1256:41-56. [PMID: 25626530 DOI: 10.1007/978-1-4939-2172-0_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Nanotechnology based diagnostics has provided improved tools for pathogen detection and sensitive and specific characterization of antibiotic resistance signatures. Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis Complex (MTBC) and, according to the World Health Organization, is one of the most serious infectious diseases in the world. Recent advances in molecular diagnostics of TB have improved both the detection time and sensitivity but they still require specialized technical personnel and cumbersome laboratory equipment. Diagnostics at point-of-need is crucial to TB control as it may provide rapid identification of pathogen together with the resistance profile of TB strains, originated from single nucleotide polymorphisms (SNPs) in different loci, allowing for a more accurate indication of the adequate therapy.Gold nanoparticles have been widely used in molecular diagnostics platforms. Here, we describe the use of gold nanoprobes (oligonucleotide functionalized gold nanoparticles) to be used in a non-cross-linking colorimetric method for the direct detection of specific DNA targets. Due to the remarkable optical properties of gold nanoparticles, this detection system provides colorimetric detection of the pathogen together with the potential of identification of several single nucleotide polymorphisms (SNPs) involved in TB resistance to antibiotics. For point-of-need use, we adapted this strategy to a low-cost mobile scheme using a paper based revelation platform and where the spectral signature is transposed to RGB data via a smartphone device. This way, identification of pathogen and characterization of resistance signatures is achieved at point-of-need.
Collapse
Affiliation(s)
- B Veigas
- CIGMH, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516, Caparica, Portugal
| | | | | |
Collapse
|
14
|
Kapata N, Mbulo G, Cobelens F, de Haas P, Schaap A, Mwamba P, Mwanza W, Muvwimi M, Muyoyeta M, Moyo M, Mulenga L, Grobusch MP, Godfrey-Faussett P, Ayles H. The Second Zambian National Tuberculosis Drug Resistance survey - a comparison of conventional and molecular methods. Trop Med Int Health 2015. [PMID: 26224169 DOI: 10.1111/tmi.12581] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The prevalence of MDR-TB in Zambia was estimated to be 1.8% in 2001. A second drug resistance survey was conducted in 2008 to determine trends; the use of the Genotype MTBDRplus assay was applied to compare results to the gold standard. METHOD A two-stage cluster sampling, with health facilities as primary sampling units. Processed sputum specimens were inoculated on solid media for culture; heat-inactivated bacterial suspensions from sputum samples were tested on a commercial line probe assay for the identification of rifampicin and isoniazid resistance. RESULTS A total of 917 patients with TB were enrolled and 883 (96.3%) analysed. A total of 574 (65%) had LJ results and 824 (93.3%) had results from MTBDRplus assay. The median age was 32, and 63.3% were males. MDR-TB according to LJ-based DST was 1.1% (CI 0.1-2.4) whereas according to MDTBDRplus assay was 1.6% (CI 0.6-2.6). Isoniazid monoresistance in new cases was 2.4% (CI 0.613-4.26) based on LJ results and 5.0% (CI 3.2-6.7) based on the MTBDRplus; in retreatment cases, it was 4.4% (CI 0.3-8.6) and 2.40% (CI <0.1-5.1) on LJ and MTBDRplus, respectively. Rifampicin monoresistance in new cases was 0.1% (CI <0.1-0.4) based on LJ and 0.6% (CI 0.01-1.1) based on the MTBDRplus; in retreatment cases, it was 0% (CI 0-3.8) and 1.8% (CI <0.1-4.0) on LJ and MTBDRplus, respectively. There were no XDR-TB cases found and no association between MDR-TB and HIV. CONCLUSION There was no increase in MDR-TB prevalence in Zambia from 2001 to 2008; results from the two methods were similar. Molecular methods were quicker and simpler to use.
Collapse
Affiliation(s)
- Nathan Kapata
- Ministry of Health, Lusaka, Zambia.,National TB and Leprosy Control Programme, Lusaka, Zambia.,Center for Tropical Medicine and Travel Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Grace Mbulo
- Zambia AIDS Related Tuberculosis Project, Lusaka, Zambia
| | - Frank Cobelens
- Department of Global Health, Amsterdam Institute of Global Health and Development, Academic Medical Centre, Amsterdam, The Netherlands
| | - Petra de Haas
- Zambia AIDS Related Tuberculosis Project, Lusaka, Zambia.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Ab Schaap
- Zambia AIDS Related Tuberculosis Project, Lusaka, Zambia
| | - Pike Mwamba
- Zambia AIDS Related Tuberculosis Project, Lusaka, Zambia
| | - Winnie Mwanza
- Zambia AIDS Related Tuberculosis Project, Lusaka, Zambia
| | | | - Monde Muyoyeta
- Zambia AIDS Related Tuberculosis Project, Lusaka, Zambia
| | - Maureen Moyo
- Zambia AIDS Related Tuberculosis Project, Lusaka, Zambia
| | | | - Martin P Grobusch
- Center for Tropical Medicine and Travel Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Godfrey-Faussett
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Helen Ayles
- Zambia AIDS Related Tuberculosis Project, Lusaka, Zambia.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
15
|
Gupta A, Anupurba S. Detection of drug resistance in Mycobacterium tuberculosis: Methods, principles and applications. ACTA ACUST UNITED AC 2015; 62:13-22. [DOI: 10.1016/j.ijtb.2015.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Biadglegne F, Sack U, Rodloff AC. Multidrug-resistant tuberculosis in Ethiopia: efforts to expand diagnostic services, treatment and care. Antimicrob Resist Infect Control 2014; 3:31. [PMID: 25685333 PMCID: PMC4328048 DOI: 10.1186/2047-2994-3-31] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 09/22/2014] [Indexed: 11/17/2022] Open
Abstract
The emergence of drug-resistant tuberculosis (TB), particularly multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB, is a major public health problem. The purpose of this review is to describe the current status of MDR-TB and factors that increase the risk of this infection. We conducted a systematic review of the literature on MDR-TB in Ethiopia. Out of 766 articles, 23 were found to meet eligibility criteria and included in this review. Among the 23 papers, six of them reported high prevalence of MDR-TB in the range of 3.3%-46.3%. Likewise, two studies reported XDR-TB in the range of 1% - 4.4% in Ethiopia. The most powerful predictor of the emergence of MDR-TB reported in Ethiopia is previous exposure to anti-TB drug treatment. This review indicated that MDR-TB in Ethiopia is a serious public health problem that needs to be addressed urgently. Strengthening early case detection and proper treatment of drug-susceptible TB in accordance with World Health Organization (WHO) treatment guidelines to ensure adequate treatment success rates is critical. Consequently, efforts have been made to a rapidly increase MDR-TB diagnosis as well as the number of treatment sites to implement a directly observed treatment, short-course (DOTS) plus strategy to interrupt transmission of MDR-TB.
Collapse
Affiliation(s)
- Fantahun Biadglegne
- College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia ; Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital, University of Leipzig, Leipzig, Germany ; Institute of Clinical Immunology, University Hospital, University of Leipzig, Leipzig, Germany ; Translational Centre for Regenerative Medicine (TRM)-Leipzig, University of Leipzig, Leipzig, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, University Hospital, University of Leipzig, Leipzig, Germany ; Translational Centre for Regenerative Medicine (TRM)-Leipzig, University of Leipzig, Leipzig, Germany
| | - Arne C Rodloff
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
17
|
Veigas B, Fernandes AR, Baptista PV. AuNPs for identification of molecular signatures of resistance. Front Microbiol 2014; 5:455. [PMID: 25221547 PMCID: PMC4147832 DOI: 10.3389/fmicb.2014.00455] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/11/2014] [Indexed: 12/11/2022] Open
Abstract
The increasing levels of drug resistance are one of biggest threats to overcome microbial infection. The ability to rapidly and accurately detect a given pathogen and its drug resistance profile is essential for the appropriate treatment of patients and for preventing further spread of drug-resistant strains. The predictive and informative value of these molecular markers needs to be translated into robust surveillance tools that correlate to the target and extent of resistance, monitor multiresistance and provide real time assessment at point-of-need. Rapid molecular assays for the detection of drug-resistance signatures in clinical specimens are based on the detection of specific nucleotide sequences and/or mutations within pre-selected biomarkers in the genome, indicative of the presence of the pathogen and/or associated with drug resistance. DNA and/or RNA based assays offer advantages over phenotypic assays, such as specificity and time from collection to result. Nanotechnology has provided new and robust tools for the detection of pathogens and more crucially to the fast and sensitive characterisation of molecular signatures of drug resistance. Amongst the plethora of nanotechnology based approaches, gold nanoparticles have prompt for the development of new strategies and platforms capable to provide valuable data at point-of-need with increased versatility but reduced costs. Gold nanoparticles, due to their unique spectral, optical and electrochemical properties, are one of the most widely used nanotechnology systems for molecular diagnostics. This review will focus on the use of gold nanoparticles for screening molecular signatures of drug resistance that have been reported thus far, and provide a critical evaluation of current and future developments of these technologies assisting pathogen identification and characterisation.
Collapse
Affiliation(s)
- Bruno Veigas
- Nanotheranostics, Centro de Investigação em Genética Molecular Humana, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal ; Centro de Investigação em Materiais, Departamento de Ciências de Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica, Portugal
| | - Alexandra R Fernandes
- Centro Química Estrutural, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica, Portugal
| | - Pedro V Baptista
- Nanotheranostics, Centro de Investigação em Genética Molecular Humana, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal
| |
Collapse
|
18
|
Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification. PLoS One 2014; 9:e103091. [PMID: 25118698 PMCID: PMC4138011 DOI: 10.1371/journal.pone.0103091] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/25/2014] [Indexed: 11/21/2022] Open
Abstract
Improved access to effective tests for diagnosing tuberculosis (TB) has been designated a public health priority by the World Health Organisation. In high burden TB countries nucleic acid based TB tests have been restricted to centralised laboratories and specialised research settings. Requirements such as a constant electrical supply, air conditioning and skilled, computer literate operators prevent implementation of such tests in many settings. Isothermal DNA amplification technologies permit the use of simpler, less energy intensive detection platforms more suited to low resource settings that allow the accurate diagnosis of a disease within a short timeframe. Recombinase Polymerase Amplification (RPA) is a rapid, low temperature isothermal DNA amplification reaction. We report here RPA-based detection of Mycobacterium tuberculosis complex (MTC) DNA in <20 minutes at 39°C. Assays for two MTC specific targets were investigated, IS6110 and IS1081. When testing purified MTC genomic DNA, limits of detection of 6.25 fg (IS6110) and 20 fg (IS1081)were consistently achieved. When testing a convenience sample of pulmonary specimens from suspected TB patients, RPA demonstrated superior accuracy to indirect fluorescence microscopy. Compared to culture, sensitivities for the IS1081 RPA and microscopy were 91.4% (95%CI: 85, 97.9) and 86.1% (95%CI: 78.1, 94.1) respectively (n = 71). Specificities were 100% and 88.6% (95% CI: 80.8, 96.1) respectively. For the IS6110 RPA and microscopy sensitivities of 87.5% (95%CI: 81.7, 93.2) and 70.8% (95%CI: 62.9, 78.7) were obtained (n = 90). Specificities were 95.4 (95% CI: 92.3,98.1) and 88% (95% CI: 83.6, 92.4) respectively. The superior specificity of RPA for detecting tuberculosis was due to the reduced ability of fluorescence microscopy to distinguish Mtb complex from other acid fast bacteria. The rapid nature of the RPA assay and its low energy requirement compared to other amplification technologies suggest RPA-based TB assays could be of use for integration into a point-of-care test for use in resource constrained settings.
Collapse
|
19
|
Zhang D, Liu B, Wang Y, Pang Y. Rapid molecular screening for multidrug-resistant tuberculosis in a resource-limited region of China. Trop Med Int Health 2014; 19:1259-66. [PMID: 25040060 DOI: 10.1111/tmi.12359] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To investigate the molecular characteristics of MDR and XDR strains circulating in Chongqing, China. METHODS The drug target genes conferring for rifampicin (RIF), isoniazid (INH), ethambutol (EMB), ofloxacin (OFLX) and kanamycin (KAN) resistance were screened by DNA sequencing to determine the mutation frequencies in this area. RESULTS Drug susceptibility of 208 MDR isolates revealed that 132 (63.46%) were resistant to streptomycin (SM), 96 (46.15%) to ethambutol (EMB), 51 (24.52%) to ofloxacin (OFLX), and 26 (12.50%) to kanamycin (KAN); six (2.88%) isolates had XDR profiles. In comparison with the drug susceptibility phenotype, the sensitivity of drug resistance by DNA sequencing was 91.83% for RIF, 87.50% for INH, 66.67% for EMB, 74.51% for OFLX and 53.85% for KAN resistance. 12.50% of EMB- and 1.27% of OFLX-susceptible isolates were harboured genetic mutations in embB and gyrA, respectively. CONCLUSION Our findings demonstrate that the hot-spot regions localised in rpoB, katG and inhA genes serve as excellent markers for the corresponding drug resistance, while EMB, OFLX or KAN drug-resistant TB cases may not be identifiable by scanning embB, gyrA, rrs and eis promoter in Chongqing, indicating that further studies on the drug resistance mechanisms of EMB, OFLX and KAN are urgently needed to elucidate the low sensitivity between genomic substitutions and drug-resistant phenotype.
Collapse
Affiliation(s)
- Dan Zhang
- Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | |
Collapse
|
20
|
Reply to "role of rpsA gene sequencing in diagnosis of pyrazinamide resistance". J Clin Microbiol 2013; 51:383. [PMID: 23269982 DOI: 10.1128/jcm.02760-12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Interpretation and Relevance of Advanced Technique Results. ADVANCED TECHNIQUES IN DIAGNOSTIC MICROBIOLOGY 2013. [PMCID: PMC7119927 DOI: 10.1007/978-1-4614-3970-7_47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Advanced techniques in the field of diagnostic microbiology have made amazing progress over the past two decades due largely to a technological revolution in the molecular aspects of microbiology [1, 2]. In particular, rapid molecular methods for nucleic acid amplification and characterization combined with automation and user-friendly software have significantly broadened the diagnostic capabilities of modern clinical microbiology laboratories. Molecular methods such as nucleic acid amplification tests (NAATs) rapidly are being developed and introduced in the clinical laboratory setting. Indeed, every section of the clinical microbiology laboratory, including bacteriology, mycology, mycobacteriology, parasitology, and virology, have benefited from these advanced techniques. Because of the rapid development and adaptation of these molecular techniques, the interpretation and relevance of the results produced by such molecular methods has lagged somewhat behind. The purpose of this chapter is to review and discuss the interpretation and relevance of results produced by these advanced molecular techniques. Moreover, this chapter will address the “myths” of NAATs, as these myths can markedly influence the interpretation and relevance of these results.
Collapse
|
22
|
Zhang Z, Li L, Luo F, Cheng P, Wu F, Wu Z, Hou T, Zhong M, Xu J. Rapid and accurate detection of RMP- and INH- resistant Mycobacterium tuberculosis in spinal tuberculosis specimens by CapitalBio™ DNA microarray: a prospective validation study. BMC Infect Dis 2012; 12:303. [PMID: 23151186 PMCID: PMC3527135 DOI: 10.1186/1471-2334-12-303] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 11/04/2012] [Indexed: 11/10/2022] Open
Abstract
Background DNA microarrays can detect tuberculosis and its multi-drug resistant form in M. tuberculosis isolates and sputum specimens with high sensitivity and specificity. However, no performance data currently exists for its use in spinal tuberculosis specimens. This study was aimed to assess the performance of the CapitalBio™ DNA microarray in the detection of isoniazid (INH) and rifampicin (RMP) resistance in spinal tuberculosis compared with the BACT/MGIT 960 system. Methods From March 2009 to December 2011, 153 consecutive patients from Southwest Hospital, Chongqing with clinically and pathologically diagnosed spinal tuberculosis were enrolled into this study. Specimens collected during surgery from the tuberculosis patients were subjected to M. tuberculosis species identification and drug-resistance detection by the CapitalBio™ DNA microarray, and results were compared with those obtained from the absolute concentration drug susceptibility testing. Results The CapitalBio™ DNA microarray achieved 93.55% sensitivity for the correct M. tuberculosis species identification of the 93 specimens that tested positive for spinal tuberculosis through culture. In addition, twenty-seven additional patients (45.0%) were detected by the DNA microarray to be positive for M. tuberculosis among sixty spinal tuberculosis patients who were culture negative. Moreover, the DNA microarray had a sensitivity of 88.9% and a specificity of 90.7% for RMP resistance, and the microarray had a sensitivity of 80.0% and a specificity of 91.0% for INH resistance. The mean turn-around time of M. tuberculosis species identification and drug resistance detection using the DNA microarray was 5.8 (range, 4–9) hours. Conclusions The CapitalBio™ DNA microarray is a feasible and accurate tool for the species identification of M. tuberculosis and for directly detecting RMP and INH resistance from spinal tuberculosis specimens in fewer than 9 hours.
Collapse
Affiliation(s)
- Zehua Zhang
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zenteno-Cuevas R, Cuevas-Cordoba B, Enciso A, Enciso L, Cuellar A. Assessing the utility of three TaqMan probes for the diagnosis of tuberculosis and resistance to rifampin and isoniazid in Veracruz, México. Can J Microbiol 2012; 58:318-25. [PMID: 22356425 DOI: 10.1139/w11-127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mutations at codons 526 and 531 in the rpoB gene and at 315 in the katG gene are considered diagnostic markers for resistance to rifampin and isoniazid in tuberculosis. The aim of this study was to design and evaluate three TaqMan probes for the identification of these mutations in 138 respiratory samples positive for acid-fast bacilli, and 32 clinical isolates from a region with considerable levels of drug resistance. The specificities of the probes for the diagnosis of resistance to both drugs were 100%; however, the sensitivities were calculated to be 50% for isoniazid and 56% for rifampin. DNA sequencing of rpoB and katG; and the spoligotyping assay of the clinical isolates, confirmed the diversity of the mutations and the presence of 11 spoligotypes with a shared international type and eight unique spoligotypes. Analysis of the respiratory samples identified 22 (16%) as drug-resistant and 4 (3%) as multidrug-resistant tuberculosis. The diagnostic value of the TaqMan probes was compromised by the diversity of mutations found in the clinical isolates. This highlights the need for better understanding of the molecular mechanisms responsible for drug resistance prior to the use of molecular probes, especially in regions with significant levels of drug-resistant tuberculosis.
Collapse
Affiliation(s)
- Roberto Zenteno-Cuevas
- Instituto de Salud Pública, Universidad Veracruzana, Av. Luis Castelazo Ayala s/n, A.P. 57, Col. Industrial Animas, Xalapa, Veracruz, 91190 México.
| | | | | | | | | |
Collapse
|
24
|
Mironova S, Pimkina E, Kontsevaya I, Nikolayevskyy V, Balabanova Y, Skenders G, Kummik T, Drobniewski F. Performance of the GenoType® MTBDRPlus assay in routine settings: a multicenter study. Eur J Clin Microbiol Infect Dis 2011; 31:1381-7. [DOI: 10.1007/s10096-011-1453-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 10/07/2011] [Indexed: 10/16/2022]
|
25
|
Abuali MM, Katariwala R, LaBombardi VJ. A comparison of the Sensititre® MYCOTB panel and the agar proportion method for the susceptibility testing of Mycobacterium tuberculosis. Eur J Clin Microbiol Infect Dis 2011; 31:835-9. [PMID: 21866324 DOI: 10.1007/s10096-011-1382-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 08/03/2011] [Indexed: 11/25/2022]
Abstract
The agar proportion method (APM) for determining Mycobacterium tuberculosis susceptibilities is a qualitative method that requires 21 days in order to produce the results. The Sensititre method allows for a quantitative assessment. Our objective was to compare the accuracy, time to results, and ease of use of the Sensititre method to the APM. 7H10 plates in the APM and 96-well microtiter dry MYCOTB panels containing 12 antibiotics at full dilution ranges in the Sensititre method were inoculated with M. tuberculosis and read for colony growth. Thirty-seven clinical isolates were tested using both methods and 26 challenge strains of blinded susceptibilities were tested using the Sensititre method only. The Sensititre method displayed 99.3% concordance with the APM. The APM provided reliable results on day 21, whereas the Sensititre method displayed consistent results by day 10. The Sensititre method provides a more rapid, quantitative, and efficient method of testing both first- and second-line drugs when compared to the gold standard. It will give clinicians a sense of the degree of susceptibility, thus, guiding the therapeutic decision-making process. Furthermore, the microwell plate format without the need for instrumentation will allow its use in resource-poor settings.
Collapse
Affiliation(s)
- M M Abuali
- Department of Pediatric Infectious Diseases, Mount Sinai School of Medicine, Mount Sinai Medical Center, 1 Gustave L. Levy Place, Box 1657, New York, NY 10029, USA.
| | | | | |
Collapse
|
26
|
Jenkins HE, Zignol M, Cohen T. Quantifying the burden and trends of isoniazid resistant tuberculosis, 1994-2009. PLoS One 2011; 6:e22927. [PMID: 21829557 PMCID: PMC3146514 DOI: 10.1371/journal.pone.0022927] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/09/2011] [Indexed: 02/05/2023] Open
Abstract
Background Quantifying isoniazid resistant (INH-R) tuberculosis (TB) is important because isoniazid resistance reduces the probability of treatment success, may facilitate the spread of multidrug resistance, and may reduce the effectiveness of isoniazid preventive therapy (IPT). Methodology/Principal Findings We used data reported to the World Health Organization between 1994–2009 to estimate the INH-R burden among new and retreatment TB cases. We assessed geographical and temporal variation in INH-R and reported levels in high HIV prevalence countries (≥2%) to understand implications for IPT. 131 settings reported INH-R data since 1994. A single global estimate of the percentage of incident TB cases with INH-R was deemed inappropriate due to particularly high levels in the Eastern European region where 44.9% (95% CI: 34.0%, 55.8%) of incident TB cases had INH-R. In all other regions combined, 13.9% (95% CI: 12.6%, 15.2%) of incident cases had INH-R with the lowest regional levels seen in West/Central Europe and Africa. Where trend data existed, we found examples of rising and falling burdens of INH-R. 40% of high HIV prevalence countries reported national data on INH-R and 7.3% (95% CI: 5.5%, 9.1%) of cases in these settings had INH-R. Conclusions/Significance Outside the Eastern European region, one in seven incident TB cases has INH-R, while this rises to nearly half within Eastern Europe. Many countries cannot assess trends in INH-R and the scarcity of data from high HIV prevalence areas limits insight into the implications for IPT. Further research is required to understand reasons for the observed time trends and to determine the effects of INH-R for control of TB.
Collapse
Affiliation(s)
- Helen E Jenkins
- Brigham and Women's Hospital, Boston, Massachusetts, United States of America.
| | | | | |
Collapse
|