1
|
Malán AK, Marizcurrenaa JJ, Oribe M, Castro-Sowinski S, Batista S. XylR regulates genes at xyl cluster, involved in D-xylose catabolism in Herbaspirillum seropedicae Z69. Arch Microbiol 2024; 206:422. [PMID: 39352521 DOI: 10.1007/s00203-024-04143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 10/10/2024]
Abstract
D-xylose, one of the most abundant sugars in lignocellulosic biomass, is not widely used to produce bioproducts with added value, in part due to the absence of industrial microorganisms able to metabolize it efficiently. Herbaspirillum seropedicae Z69 is a β-proteobacterium able to accumulate poly-3-hydroxybutyrate, a biodegradable thermoplastic biopolymer, with contents higher than 50%. It metabolizes D-xylose by non-phosphorylative pathways. In the genome of Z69, we found the genes xylFGH (ABC D-xylose transporter), xylB, xylD, and xylC (superior non-phosphorylative pathway), and the transcriptional regulator xylR, forming the xyl cluster. We constructed the knock-out mutant Z69ΔxylR that has a reduced growth in D-xylose and in D-glucose, compared with Z69. In addition, we analyzed the expression of xyl genes by RT-qPCR and promoter fusion. These results suggest that XylR activates the expression of genes at the xyl cluster in the presence of D-xylose. On the other hand, XylR does not regulate the expression of xylA, mhpD (lower non-phosphorylative pathways) and araB (L-arabinose dehydrogenase) genes. The participation of D-glucose in the regulation mechanism of these genes must still be elucidated. These results contribute to the development of new strains adapted to consume lignocellulosic sugars for the production of value-added bioproducts.
Collapse
Affiliation(s)
- Ana Karen Malán
- Laboratorio de Microbiología Molecular, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, 11600, Uruguay.
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, , 11400, Uruguay.
| | - Juan José Marizcurrenaa
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, , 11400, Uruguay
| | - Manuela Oribe
- Laboratorio de Microbiología Molecular, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, 11600, Uruguay
| | - Susana Castro-Sowinski
- Laboratorio de Microbiología Molecular, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, 11600, Uruguay
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, , 11400, Uruguay
| | - Silvia Batista
- Laboratorio de Microbiología Molecular, Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo, 11600, Uruguay
| |
Collapse
|
2
|
Clover Root Exudates Favor Novosphingobium sp. HR1a Establishment in the Rhizosphere and Promote Phenanthrene Rhizoremediation. mSphere 2021; 6:e0041221. [PMID: 34378981 PMCID: PMC8386446 DOI: 10.1128/msphere.00412-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizoremediation is based on the ability of microorganisms to metabolize nutrients from plant root exudates and, thereby, to cometabolize or even mineralize toxic environmental contaminants. Novosphingobium sp. HR1a is a bacterial strain able to degrade a wide variety of polycyclic aromatic hydrocarbons (PAHs). Here, we have demonstrated that the number of CFU in microcosms vegetated with clover was almost 2 orders of magnitude higher than that in nonvegetated microcosms or microcosms vegetated with rye-grass or grass. Strain HR1a was able to eliminate 92% of the phenanthrene in the microcosms with clover after 9 days. We have studied the molecular basis of the interaction between strain HR1a and clover by phenomic, metabolomic, and transcriptomic analyses. By measuring the relative concentrations of several metabolites exudated by clover both in the presence and in the absence of the bacteria, we identified some compounds that were probably consumed in the rhizosphere; the transcriptomic analyses confirmed the expression of genes involved in the catabolism of these compounds. By using a transcriptional fusion of the green fluorescent protein (GFP) to the promoter of the gene encoding the dioxygenase involved in the degradation of PAHs, we have demonstrated that this gene is induced at higher levels in clover microcosms than in nonvegetated microcosms. Therefore, the positive interaction between clover and Novosphingobium sp. HR1a during rhizoremediation is a result of the bacterial utilization of different carbon and nitrogen sources released during seedling development and the capacity of clover exudates to induce the PAH degradation pathway. IMPORTANCE The success of an eco-friendly and cost-effective strategy for soil decontamination is conditioned by the understanding of the ecology of plant-microorganism interactions. Although many studies have been published about the bacterial metabolic capacities in the rhizosphere and about rhizoremediation of contaminants, there are fewer studies dealing with the integration of bacterial metabolic capacities in the rhizosphere during PAH bioremediation, and some aspects still remain controversial. Some authors have postulated that the presence of easily metabolizable carbon sources in root exudates might repress the expression of genes required for contaminant degradation, while others found that specific rhizosphere compounds can induce such genes. Novosphingobium sp. HR1a, which is our model organism, has two characteristics desirable in bacteria for use in remediation: its ubiquity and the capacity to degrade a wide variety of contaminants. We have demonstrated that this bacterium consumes several rhizospheric compounds without repression of the genes required for the mineralization of PAHs. In fact, some compounds even induced their expression.
Collapse
|
3
|
Herbaspirillum seropedicae strain HRC54 expression profile in response to sugarcane apoplastic fluid. 3 Biotech 2021; 11:292. [PMID: 34136329 DOI: 10.1007/s13205-021-02848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/17/2021] [Indexed: 10/21/2022] Open
Abstract
Bacterial transcriptome profiling in the presence of plant fluids or extracts during microbial growth may provide relevant information on plant-bacteria interactions. Here, RNA sequencing (RNA-Seq) was used to determine the transcriptomic profile of Herbaspirillum seropedicae strain HRC54 at the early stages of response to sugarcane apoplastic fluid. Differentially expressed gene (DEG) analysis was performed using the DESeq2 and edgeR packages, followed by functional annotation using Blast2GO and gene ontology enrichment analysis using the COG and KEGG databases. After 2 h of sugarcane apoplastic fluid addition to the H. seropedicae HRC54 culture, respectively, 44 and 45 genes were upregulated and downregulated. These genes were enriched in bacterial metabolism (e.g., oxidoreductase and transferase), ABC transporters, motility, secretion systems, and signal transduction. RNA-Seq expression profiles of 12 genes identified in data analyses were verified by RT-qPCR. The results suggested that H. seropedicae HRC54 recognized sugarcane apoplastic fluid as the host signal, and some DEGs were closely involved at the early stages of the establishment of plant-bacteria interactions. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02848-y.
Collapse
|
4
|
Reference genes for real-time RT-PCR expression studies in an Antarctic Pseudomonas exposed to different temperature conditions. Extremophiles 2019; 23:625-633. [DOI: 10.1007/s00792-019-01109-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
|
5
|
Selection of Optimized Reference Genes for qRT-PCR Normalization in Xanthomonas campestris pv. campestris Cultured in Different Media. Curr Microbiol 2019; 76:613-619. [PMID: 30863882 DOI: 10.1007/s00284-019-01667-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/02/2019] [Indexed: 12/13/2022]
Abstract
Black rot is a cruciferous disease caused by Xanthomonas campestris pv. campestris (Xcc) and results in significant economic losses worldwide; therefore, elucidation of the mechanism of Xcc pathogenesis is urgently required. In this study, we aimed to select optimized reference genes to verify the relative quantification of virulent genes in Xcc. Xcc strains were cultured in three different media [basic medium (MMX), hrp-inducing medium (MMXC) and rich medium (NYG)] and the expression stability of five candidate genes [thymidylate synthase (thyA), DNA gyrase subunit B (gyrB), DNA-directed RNA polymerase subunit beta, glyceraldehyde-3-phosphate dehydrogenase and 16S ribosomal RNA (16S rRNA)] was evaluated using BestKeeper, GeNorm, and NormFinder software programs. Quantitative real-time PCR (qRT-PCR) analysis confirmed that two Xcc effector genes were hrpX/hrpG-regulated in MMXC using selected genes as controls. Finally, gyrB and thyA were validated as the optimized reference genes of Xcc cultured in MMXC, and qRT-PCR analysis was demonstrated to be an efficient alternative to Gus-activity detection for the analysis of Xcc expression. This information will be useful in the future studies of Xcc, especially those seeking new functional genes.
Collapse
|
6
|
Polese V, de Paula Soares C, da Silva PRA, Simões-Araújo JL, Baldani JI, Vidal MS. Selection and validation of reference genes for RT-qPCR indicates that juice of sugarcane varieties modulate the expression of C metabolism genes in the endophytic diazotrophic Herbaspirillum rubrisubalbicans strain HCC103. Antonie Van Leeuwenhoek 2017; 110:1555-1568. [DOI: 10.1007/s10482-017-0906-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022]
|
7
|
Brown AJ, Gibson S, Hatton D, James DC. Transcriptome-Based Identification of the Optimal Reference CHO Genes for Normalisation of qPCR Data. Biotechnol J 2017; 13. [PMID: 28731643 DOI: 10.1002/biot.201700259] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/06/2017] [Indexed: 12/20/2022]
Abstract
Real-time quantitative PCR (qPCR) is the standard method for determination of relative changes in mRNA transcript abundance. Analytical accuracy, precision and reliability are critically dependent on the selection of internal control reference genes. In this study, the authors have identified optimal reference genes that can be utilised universally for qPCR analysis of CHO cell mRNAs. Initially, transcriptomic datasets were analysed to identify eight endogenous genes that exhibited high expression stability across four distinct CHO cell lines sampled in different culture phases. The relative transcript abundance of each gene in 20 diverse, commonly applied experimental conditions was then determined by qPCR analysis. Utilizing GeNorm, BestKeeper and NormFinder algorithms, the authors identified four mRNAs (Gnb1, Fkbp1a, Tmed2 and Mmadhc) that exhibited a highly stable level of expression across all conditions, validating their utility as universally applicable reference genes. Whilst any combination of only two genes can be generally used for normalisation of qPCR data, the authors show that specific combinations of reference genes are particularly suited to discrete experimental conditions. In summary, the authors report the identification of fully validated universal reference genes, optimised primer sequences robust to genomic mutations and simple reference gene pair selection guidelines that enable streamlined qPCR analyses of mRNA abundance in CHO cells with maximum accuracy and precision.
Collapse
Affiliation(s)
- Adam J Brown
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, England
| | - Suzanne Gibson
- Biopharmaceutical Development, MedImmune, Cambridge, CB21 6GH, England
| | - Diane Hatton
- Biopharmaceutical Development, MedImmune, Cambridge, CB21 6GH, England
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Mappin St., Sheffield, S1 3JD, England
| |
Collapse
|