1
|
Al-Salihi SAA, Bull ID, Al-Salhi R, Gates PJ, Salih KSM, Bailey AM, Foster GD. Further Biochemical Profiling of Hypholoma fasciculare Metabolome Reveals Its Chemogenetic Diversity. Front Bioeng Biotechnol 2021; 9:567384. [PMID: 34109161 PMCID: PMC8181146 DOI: 10.3389/fbioe.2021.567384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
Natural products with novel chemistry are urgently needed to battle the continued increase in microbial drug resistance. Mushroom-forming fungi are underutilized as a source of novel antibiotics in the literature due to their challenging culture preparation and genetic intractability. However, modern fungal molecular and synthetic biology tools have renewed interest in exploring mushroom fungi for novel therapeutic agents. The aims of this study were to investigate the secondary metabolites of nine basidiomycetes, screen their biological and chemical properties, and then investigate the genetic pathways associated with their production. Of the nine fungi selected, Hypholoma fasciculare was revealed to be a highly active antagonistic species, with antimicrobial activity against three different microorganisms: Bacillus subtilis, Escherichia coli, and Saccharomyces cerevisiae. Genomic comparisons and chromatographic studies were employed to characterize more than 15 biosynthetic gene clusters and resulted in the identification of 3,5-dichloromethoxy benzoic acid as a potential antibacterial compound. The biosynthetic gene cluster for this product is also predicted. This study reinforces the potential of mushroom-forming fungi as an underexplored reservoir of bioactive natural products. Access to genomic data, and chemical-based frameworks, will assist the development and application of novel molecules with applications in both the pharmaceutical and agrochemical industries.
Collapse
Affiliation(s)
| | - Ian D. Bull
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | - Raghad Al-Salhi
- Chemistry Department, University of Mustansiriyah, Baghdad, Iraq
| | - Paul J. Gates
- School of Chemistry, University of Bristol, Bristol, United Kingdom
| | | | - Andy M. Bailey
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Gary D. Foster
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
2
|
Kang H, Chen X, Kemppainen M, Pardo AG, Veneault-Fourrey C, Kohler A, Martin FM. The small secreted effector protein MiSSP7.6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis. Environ Microbiol 2020; 22:1435-1446. [PMID: 32090429 DOI: 10.1111/1462-2920.14959] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/29/2022]
Abstract
To establish and maintain a symbiotic relationship, the ectomycorrhizal fungus Laccaria bicolor releases mycorrhiza-induced small secreted proteins (MiSSPs) into host roots. Here, we have functionally characterized the MYCORRHIZA-iNDUCED SMALL SECRETED PROTEIN OF 7.6 kDa (MiSSP7.6) from L. bicolor by assessing its induced expression in ectomycorrhizae, silencing its expression by RNAi, and tracking in planta subcellular localization of its protein product. We also carried out yeast two-hybrid assays and bimolecular fluorescence complementation analysis to identify possible protein targets of the MiSSP7.6 effector in Populus roots. We showed that MiSSP7.6 expression is upregulated in ectomycorrhizal rootlets and associated extramatrical mycelium during the late stage of symbiosis development. RNAi mutants with a decreased MiSSP7.6 expression have a lower mycorrhization rate, suggesting a key role in the establishment of the symbiosis with plants. MiSSP7.6 is secreted, and it localizes both to the nuclei and cytoplasm in plant cells. MiSSP7.6 protein was shown to interact with two Populus Trihelix transcription factors. Furthermore, when coexpressed with one of the Trihelix transcription factors, MiSSP7.6 is localized to plant nuclei only. Our data suggest that MiSSP7.6 is a novel secreted symbiotic effector and is a potential determinant for ectomycorrhiza formation.
Collapse
Affiliation(s)
- Heng Kang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Xin Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minna Kemppainen
- Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, Argentina
| | - Alejandro G Pardo
- Laboratorio de Micología Molecular, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bernal, Provincia de Buenos Aires, Argentina
| | - Claire Veneault-Fourrey
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Annegret Kohler
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| | - Francis M Martin
- University of Lorraine, Institut National de la Recherche Agronomique, UMR Interactions Arbres/Microorganismes, Laboratoire d'Excellence ARBRE, Centre INRA-Grand Est, Champenoux, France
| |
Collapse
|
3
|
Al-Salihi SAA, Dao TT, Williams K, Bailey AM, Foster GD. The Biogenetic Origin of the Biologically Active Naematolin of Hypholoma Species Involves an Unusual Sesquiterpene Synthase. Mol Biotechnol 2020; 61:754-762. [PMID: 31392585 PMCID: PMC7019648 DOI: 10.1007/s12033-019-00199-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Naematolin is a biologically active sesquiterpene produced by Hypholoma species. Low titres and complex structure constrain the exploitation of this secondary metabolite. Here, we de novo sequenced the H. fasciculare genome to identify a candidate biosynthetic gene cluster for production of naematolin. Using Aspergillus oryzae as a heterologous host for gene expression, the activity of several sesquiterpene synthases were investigated, highlighting one atypical sesquiterpene synthase apparently capable of catalysing the 1,11 and subsequent 2,10 ring closures, which primes the synthesis of the distinctive structure of caryophyllene derivatives. Co-expression of the cyclase with an FAD oxidase adjacent within the gene cluster generated four oxidised caryophyllene-based sesquiterpenes: 5β,6α,8β-trihydroxycariolan, 5β,8β-dihydroxycariolan along with two previously unknown caryophyllene derivatives 2 and 3. This represents the first steps towards heterologous production of such basidiomycete-derived caryophyllene-based sesquiterpenes, opening a venue for potential novel antimicrobials via combinatorial biosynthesis.
Collapse
Affiliation(s)
- Suhad A A Al-Salihi
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Trong Tuan Dao
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK
| | - Katherine Williams
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Andy M Bailey
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| | - Gary D Foster
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
4
|
Lv S, Chen X, Mou C, Dai S, Bian Y, Kang H. Agrobacterium-mediated transformation of the ascomycete mushroom Morchella importuna using polyubiquitin and glyceraldehyde-3-phosphate dehydrogenase promoter-based binary vectors. World J Microbiol Biotechnol 2018; 34:148. [DOI: 10.1007/s11274-018-2529-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/31/2018] [Indexed: 01/30/2023]
|