1
|
Du W, Meister LL, van Grinsven T, Branco dos Santos F. Efficient Multiplex Genome Editing of the Cyanobacterium Synechocystis sp. PCC6803 via CRISPR-Cas12a. Biotechnol Bioeng 2025; 122:736-743. [PMID: 39702692 PMCID: PMC11808434 DOI: 10.1002/bit.28910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
Cyanobacteria have been genetically modified to convert CO2 into biochemical products, but efficient genetic engineering tools, including CRISPR-Cas systems, remain limited. This is primarily due to the polyploid nature of cyanobacteria, which hinders their effectiveness. Here, we address the latter by specifically (i) modifying the RSF1010-based replicative plasmid to simplify cloning efforts while maintaining high conjugation efficiency; (ii) improving the design of the guide RNA (gRNA) to facilitate chromosomal cleavage; (iii) introducing template DNA fragments as pure plasmids via natural transformation; and (iv) using sacB to facilitate replicative plasmid curing. With this system, the replicative plasmid containing both Cas12a and gRNA is introduced to Synechocystis sp. PCC6803 cells via conjugation to cleave the circular chromosomes. Template DNA plasmid that has meanwhile been assimilated will then repair it achieving the desired genetic modifications. This system was validated by successfully deleting various "neutral" chromosomal loci, both individually and collectively, as well as targeting an essential gene, sll1797. With the sacB-sucrose counter-selection, all deletions were simultaneously made markerless in < 4 weeks. Moreover, we also integrate YFP with various protein degradation tags into the chromosome, allowing for their characterization at the chromosomal level. We foresee this system will greatly facilitate future genome engineering in cyanobacteria.
Collapse
Affiliation(s)
- Wei Du
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luna L. Meister
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Tobias van Grinsven
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| | - Filipe Branco dos Santos
- Molecular Microbial Physiology Group, Swammerdam Institute for Life Sciences, Faculty of ScienceUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
2
|
Park W, Cha S, Hahn JS. Advancements in Biological Conversion of C1 Feedstocks: Sustainable Bioproduction and Environmental Solutions. ACS Synth Biol 2024; 13:3788-3798. [PMID: 39610332 DOI: 10.1021/acssynbio.4c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The use of one-carbon (C1) feedstocks, including carbon dioxide (CO2), carbon monoxide (CO), formate (HCO2H), methanol (CH3OH), and methane (CH4), presents a significant opportunity for sustainable bioproduction and environmental conservation. This Perspective explores the development of biological methods for converting C1 feedstocks into valuable products, emphasizing major progress from engineering native C1 assimilation pathways to the creation of synthetic autotrophs and methylotrophs that utilize these carbon sources. Additionally, we discuss hybrid approaches that merge biological and electrochemical systems, particularly for the conversion of CO2. This Perspective underscores the importance of C1 bioconversion in promoting sustainable biotechnological strategies for a low-carbon future.
Collapse
Affiliation(s)
- Wooyoung Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seungwoo Cha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Victoria AJ, Selão TT, Moreno-Cabezuelo JÁ, Mills LA, Gale GAR, Lea-Smith DJ, McCormick AJ. A toolbox to engineer the highly productive cyanobacterium Synechococcus sp. PCC 11901. PLANT PHYSIOLOGY 2024; 196:1674-1690. [PMID: 38713768 PMCID: PMC11444289 DOI: 10.1093/plphys/kiae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/09/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
Synechococcus sp. PCC 11901 (PCC 11901) is a fast-growing marine cyanobacterial strain that has a capacity for sustained biomass accumulation to very high cell densities, comparable to that achieved by commercially relevant heterotrophic organisms. However, genetic tools to engineer PCC 11901 for biotechnology applications are limited. Here we describe a suite of tools based on the CyanoGate MoClo system to unlock the engineering potential of PCC 11901. First, we characterized neutral sites suitable for stable genomic integration that do not affect growth even at high cell densities. Second, we tested a suite of constitutive promoters, terminators, and inducible promoters including a 2,4-diacetylphloroglucinol (DAPG)-inducible PhlF repressor system, which has not previously been demonstrated in cyanobacteria and showed tight regulation and a 228-fold dynamic range of induction. Lastly, we developed a DAPG-inducible dCas9-based CRISPR interference (CRISPRi) system and a modular method to generate markerless mutants using CRISPR-Cas12a. Based on our findings, PCC 11901 is highly responsive to CRISPRi-based repression and showed high efficiencies for single insertion (31% to 81%) and multiplex double insertion (25%) genome editing with Cas12a. We envision that these tools will lay the foundations for the adoption of PCC 11901 as a robust model strain for engineering biology and green biotechnology.
Collapse
Affiliation(s)
- Angelo J Victoria
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Tiago Toscano Selão
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Lauren A Mills
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Grant A R Gale
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Alistair J McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|
4
|
Li XD, Liu LM, Xi YC, Sun QW, Luo Z, Huang HL, Wang XW, Jiang HB, Chen W. Development of a base editor for convenient and multiplex genome editing in cyanobacteria. Commun Biol 2024; 7:994. [PMID: 39143188 PMCID: PMC11324792 DOI: 10.1038/s42003-024-06696-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
Cyanobacteria are important primary producers, contributing to 25% of the global carbon fixation through photosynthesis. They serve as model organisms to study the photosynthesis, and are important cell factories for synthetic biology. To enable efficient genetic dissection and metabolic engineering in cyanobacteria, effective and accurate genetic manipulation tools are required. However, genetic manipulation in cyanobacteria by the conventional homologous recombination-based method and the recently developed CRISPR-Cas gene editing system require complicated cloning steps, especially during multi-site editing and single base mutation. This restricts the extensive research on cyanobacteria and reduces its application potential. In this study, a highly efficient and convenient cytosine base editing system was developed which allows rapid and precise C → T point mutation and gene inactivation in the genomes of Synechocystis and Anabaena. This base editing system also enables efficient multiplex editing and can be easily cured after editing by sucrose counter-selection. This work will expand the knowledge base regarding the engineering of cyanobacteria. The findings of this study will encourage the biotechnological applications of cyanobacteria.
Collapse
Affiliation(s)
- Xing-Da Li
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ling-Mei Liu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, 430079, China
| | - Yi-Cao Xi
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Qiao-Wei Sun
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Zhen Luo
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hai-Long Huang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Xin-Wei Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hai-Bo Jiang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, 519080, China.
| | - Weizhong Chen
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
5
|
Tiwari D, Kumar N, Bongirwar R, Shukla P. Nutraceutical prospects of genetically engineered cyanobacteria- technological updates and significance. World J Microbiol Biotechnol 2024; 40:263. [PMID: 38980547 DOI: 10.1007/s11274-024-04064-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/23/2024] [Indexed: 07/10/2024]
Abstract
Genetically engineered cyanobacterial strains that have improved growth rate, biomass productivity, and metabolite productivity could be a better option for sustainable bio-metabolite production. The global demand for biobased metabolites with nutraceuticals and health benefits has increased due to their safety and plausible therapeutic and nutritional utility. Cyanobacteria are solar-powered green cellular factories that can be genetically tuned to produce metabolites with nutraceutical and pharmaceutical benefits. The present review discusses biotechnological endeavors for producing bioprospective compounds from genetically engineered cyanobacteria and discusses the challenges and troubleshooting faced during metabolite production. This review explores the cyanobacterial versatility, the use of engineered strains, and the techno-economic challenges associated with scaling up metabolite production from cyanobacteria. Challenges to produce cyanobacterial bioactive compounds with remarkable nutraceutical values have been discussed. Additionally, this review also summarises the challenges and future prospects of metabolite production from genetically engineered cyanobacteria as a sustainable approach.
Collapse
Affiliation(s)
- Deepali Tiwari
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Niwas Kumar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Riya Bongirwar
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
6
|
Li Z, Li S, Chen L, Sun T, Zhang W. Fast-growing cyanobacterial chassis for synthetic biology application. Crit Rev Biotechnol 2024; 44:414-428. [PMID: 36842999 DOI: 10.1080/07388551.2023.2166455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/19/2022] [Accepted: 12/28/2022] [Indexed: 02/28/2023]
Abstract
Carbon neutrality by 2050 has become one of the most urgent challenges the world faces today. To address the issue, it is necessary to develop and promote new technologies related with CO2 recycling. Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis, capable of fixing CO2 into biomass under sunlight and serving as one of the most important primary producers on earth. Notably, recent progress on synthetic biology has led to utilizing model cyanobacteria such as Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 as chassis for "light-driven autotrophic cell factories" to produce several dozens of biofuels and various fine chemicals directly from CO2. However, due to the slow growth rate and low biomass accumulation in the current chassis, the productivity for most products is still lower than the threshold necessary for large-scale commercial application, raising the importance of developing high-efficiency cyanobacterial chassis with fast growth and/or higher biomass accumulation capabilities. In this article, we critically reviewed recent progresses on identification, systems biology analysis, and engineering of fast-growing cyanobacterial chassis. Specifically, fast-growing cyanobacteria identified in recent years, such as S. elongatus UTEX 2973, S. elongatus PCC 11801, S. elongatus PCC 11802 and Synechococcus sp. PCC 11901 was comparatively analyzed. In addition, the progresses on their recent application in converting CO2 into chemicals, and genetic toolboxes developed for these new cyanobacterial chassis were discussed. Finally, the article provides insights into future challenges and perspectives on the synthetic biology application of cyanobacterial chassis.
Collapse
Affiliation(s)
- Zhixiang Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, P.R. China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin, P.R. China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, P.R. China
| |
Collapse
|
7
|
Goodchild-Michelman IM, Church GM, Schubert MG, Tang TC. Light and carbon: Synthetic biology toward new cyanobacteria-based living biomaterials. Mater Today Bio 2023; 19:100583. [PMID: 36846306 PMCID: PMC9945787 DOI: 10.1016/j.mtbio.2023.100583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
Cyanobacteria are ideal candidates to use in developing carbon neutral and carbon negative technologies; they are efficient photosynthesizers and amenable to genetic manipulation. Over the past two decades, researchers have demonstrated that cyanobacteria can make sustainable, useful biomaterials, many of which are engineered living materials. However, we are only beginning to see such technologies applied at an industrial scale. In this review, we explore the ways in which synthetic biology tools enable the development of cyanobacteria-based biomaterials. First we give an overview of the ecological and biogeochemical importance of cyanobacteria and the work that has been done using cyanobacteria to create biomaterials so far. This is followed by a discussion of commonly used cyanobacteria strains and synthetic biology tools that exist to engineer cyanobacteria. Then, three case studies-bioconcrete, biocomposites, and biophotovoltaics-are explored as potential applications of synthetic biology in cyanobacteria-based materials. Finally, challenges and future directions of cyanobacterial biomaterials are discussed.
Collapse
Affiliation(s)
- Isabella M. Goodchild-Michelman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Max G. Schubert
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Tzu-Chieh Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
8
|
Cobos M, Condori RC, Grandez MA, Estela SL, Del Aguila MT, Castro CG, Rodríguez HN, Vargas JA, Tresierra AB, Barriga LA, Marapara JL, Adrianzén PM, Ruiz R, Castro JC. Genomic analysis and biochemical profiling of an unaxenic strain of Synechococcus sp. isolated from the Peruvian Amazon Basin region. Front Genet 2022; 13:973324. [DOI: 10.3389/fgene.2022.973324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
Cyanobacteria are diverse photosynthetic microorganisms able to produce a myriad of bioactive chemicals. To make possible the rational exploitation of these microorganisms, it is fundamental to know their metabolic capabilities and to have genomic resources. In this context, the main objective of this research was to determine the genome features and the biochemical profile of Synechococcus sp. UCP002. The cyanobacterium was isolated from the Peruvian Amazon Basin region and cultured in BG-11 medium. Growth parameters, genome features, and the biochemical profile of the cyanobacterium were determined using standardized methods. Synechococcus sp. UCP002 had a specific growth rate of 0.086 ± 0.008 μ and a doubling time of 8.08 ± 0.78 h. The complete genome of Synechococcus sp. UCP002 had a size of ∼3.53 Mb with a high coverage (∼200x), and its quality parameters were acceptable (completeness = 99.29%, complete and single-copy genes = 97.5%, and contamination = 0.35%). Additionally, the cyanobacterium had six plasmids ranging from 24 to 200 kbp. The annotated genome revealed ∼3,422 genes, ∼ 3,374 protein-coding genes (with ∼41.31% hypothetical protein-coding genes), two CRISPR Cas systems, and 61 non-coding RNAs. Both the genome and plasmids had the genes for prokaryotic defense systems. Additionally, the genome had genes coding the transcription factors of the metalloregulator ArsR/SmtB family, involved in sensing heavy metal pollution. The biochemical profile showed primary nutrients, essential amino acids, some essential fatty acids, pigments (e.g., all-trans-β-carotene, chlorophyll a, and phycocyanin), and phenolic compounds. In conclusion, Synechococcus sp. UCP002 shows biotechnological potential to produce human and animal nutrients and raw materials for biofuels and could be a new source of genes for synthetic biological applications.
Collapse
|
9
|
Winkelman DC, Nikolau BJ. The Effects of Carbon Source and Growth Temperature on the Fatty Acid Profiles of Thermobifida fusca. Front Mol Biosci 2022; 9:896226. [PMID: 35720111 PMCID: PMC9198275 DOI: 10.3389/fmolb.2022.896226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The aerobic, thermophilic Actinobacterium, Thermobifida fusca has been proposed as an organism to be used for the efficient conversion of plant biomass to fatty acid-derived precursors of biofuels or biorenewable chemicals. Despite the potential of T. fusca to catabolize plant biomass, there is remarkably little data available concerning the natural ability of this organism to produce fatty acids. Therefore, we determined the fatty acids that T. fusca produces when it is grown on different carbon sources (i.e., glucose, cellobiose, cellulose and avicel) and at two different growth temperatures, namely at the optimal growth temperature of 50°C and at a suboptimal temperature of 37°C. These analyses establish that T. fusca produces a combination of linear and branched chain fatty acids (BCFAs), including iso-, anteiso-, and 10-methyl BCFAs that range between 14- and 18-carbons in length. Although different carbon sources and growth temperatures both quantitatively and qualitatively affect the fatty acid profiles produced by T. fusca, growth temperature is the greater modifier of these traits. Additionally, genome scanning enabled the identification of many of the fatty acid biosynthetic genes encoded by T. fusca.
Collapse
Affiliation(s)
| | - Basil J. Nikolau
- Department of Biochemistry, Biophysics and Molecular Biology and the Center of Metabolic Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
10
|
Baldanta S, Guevara G, Navarro-Llorens JM. SEVA-Cpf1, a CRISPR-Cas12a vector for genome editing in cyanobacteria. Microb Cell Fact 2022; 21:103. [PMID: 35643551 PMCID: PMC9148489 DOI: 10.1186/s12934-022-01830-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/13/2022] [Indexed: 12/01/2022] Open
Abstract
Background Cyanobacteria are photosynthetic autotrophs that have tremendous potential for fundamental research and industrial applications due to their high metabolic plasticity and ability to grow using CO2 and sunlight. CRISPR technology using Cas9 and Cpf1 has been applied to different cyanobacteria for genome manipulations and metabolic engineering. Despite significant advances with genome editing in several cyanobacteria strains, the lack of proper genetic toolboxes is still a limiting factor compared to other model laboratory species. Among the limitations, it is essential to have versatile plasmids that could ease the benchwork when using CRISPR technology. Results In the present study, several CRISPR-Cpf1 vectors were developed for genetic manipulations in cyanobacteria using SEVA plasmids. SEVA collection is based on modular vectors that enable the exchangeability of diverse elements (e.g. origins of replication and antibiotic selection markers) and the combination with many cargo sequences for varied end-applications. Firstly, using SEVA vectors containing the broad host range RSF1010 origin we demonstrated that these vectors are replicative not only in model cyanobacteria but also in a new cyanobacterium specie, Chroococcidiopsis sp., which is different from those previously published. Then, we constructed SEVA vectors by harbouring CRISPR elements and showed that they can be easily assimilated not only by conjugation, but also by natural transformation. Finally, we used our SEVA-Cpf1 tools to delete the nblA gene in Synechocystis sp. PCC 6803, demonstrating that our plasmids can be applied for CRISPR-based genome editing technology. Conclusions The results of this study provide new CRISPR-based vectors based on the SEVA (Standard European Vector Architecture) collection that can improve editing processes using the Cpf1 nuclease in cyanobacteria. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01830-4.
Collapse
|
11
|
Wendt KE, Walker P, Sengupta A, Ungerer J, Pakrasi HB. Engineering Natural Competence into the Fast-Growing Cyanobacterium Synechococcus elongatus Strain UTEX 2973. Appl Environ Microbiol 2022; 88:e0188221. [PMID: 34705549 PMCID: PMC8752150 DOI: 10.1128/aem.01882-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
Natural transformation is the process by which bacteria actively take up and integrate extracellular DNA into their genomes. In cyanobacteria, natural transformation has only been experimentally demonstrated in a few species. Although cyanobacteria are important model systems for studying photosynthesis and circadian cycling, natural transformation in cyanobacteria has not been characterized to the degree that the process has been studied in other Gram-negative bacteria. Two cyanobacterial species that are 99.8% genetically identical provide a unique opportunity to better understand the nuances of natural transformation in cyanobacteria: Synechococcus elongatus PCC 7942 and Synechococcus elongatus UTEX 2973 (hereafter called Synechococcus 7942 and Synechococcus 2973, respectively). Synechococcus 7942 is a naturally transformable model system, while Synechococcus 2973 is a recently discovered species that is not naturally competent. Taking only 1.5 h to replicate, Synechococcus 2973 is the fastest-growing cyanobacterial species known and thus is a strong candidate for serving as a model organism. However, its inability to undergo natural transformation has prevented it from becoming a widely used model system. By substituting polymorphic alleles from Synechococcus 7942 for native Synechococcus 2973 alleles, natural transformation was introduced into Synechococcus 2973. Two genetic loci were found to be involved in differential natural competence between the two organisms: transformation pilus component pilN and circadian transcriptional master regulator rpaA. By using targeted genome editing and enrichment outgrowth, a strain that was both naturally transformable and fast-growing was created. This new Synechococcus 2973-T strain will serve as a valuable resource to the cyanobacterial research community. IMPORTANCE Certain bacterial species have the ability to take up naked extracellular DNA and integrate it into their genomes. This process is known as natural transformation and is widely considered to play a major role in bacterial evolution. Because of the ease of introducing new genes into naturally transformable organisms, this capacity is also highly valued in the laboratory. Cyanobacteria are photosynthetic and can therefore serve as model systems for some important aspects of plant physiology. Here, we describe the creation of a modified cyanobacterial strain (Synechococcus 2973-T) that is capable of undergoing natural transformation and has a replication time on par with that of the fastest-growing cyanobacterium discovered to date. This new cyanobacterium has the potential to serve as a new model organism for the cyanobacterial research community and will allow experiments to be completed in a fraction of the time it has taken to complete previous assays.
Collapse
Affiliation(s)
- Kristen E. Wendt
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Patricia Walker
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Annesha Sengupta
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Justin Ungerer
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
12
|
Sengupta A, Liu D, Pakrasi HB. CRISPR-Cas mediated genome engineering of cyanobacteria. Methods Enzymol 2022; 676:403-432. [DOI: 10.1016/bs.mie.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|