1
|
Ditommaso S, Garlasco J, Memoli G, Curtoni A, Bondi A, Ceccarelli A, Giacomuzzi M. Emergence of Mycobacterium gordonae in heater-cooler units: a five-year prospective surveillance of devices frequently subjected to chloramine-T booster disinfection. J Hosp Infect 2025; 155:9-16. [PMID: 39447649 DOI: 10.1016/j.jhin.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Worldwide, the detection of Mycobacterium chimaera in LivaNova heater-cooler units (HCUs) has led to their replacement with other HCUs, although non-tuberculous mycobacteria (NTM) have been reported also for HCUs produced by other manufacturers. In almost all hospitals of our region, LivaNova HCUs have been replaced with Maquet HCU40s, regularly disinfected with chloramine-T. AIM To report the results of the surveillance over a 63-month operation period of the Maquet devices, and to provide a trend in NTM positivity over time. METHODS Twenty-nine Maquet devices (HCU40 and HU35) were monitored by two culture methods and propidium monoazide polymerase chain reaction (PMA-PCR) method. The trend in NTM positivity rate was evaluated through the Locally Estimated Scatterplot Smoothing regression and then modelled over time through segmented logistic regression. FINDINGS The data acquired during the study period demonstrate a remarkable increase in the positivity rate, especially after the third year (maximum slope change at 1280 days). Non-tuberculous mycobacteria were isolated in 150 water samples (37.2%); 100% and 62% of HCU40 and HU35 devices, respectively, were colonized with non-tuberculous mycobacteria. The most frequently detected species were Mycobacterium gordonae (73%) followed by Mycobacterium chelonae (41%) and Mycobacterium paragordonae (11%). CONCLUSION Preventive strategies by disinfection with chloramine-T did not effectively reduce non-tuberculous mycobacteria colonization of Maquet devices. Although, to date, no cases of postoperative invasive infections linked to Maquet devices have been reported, our microbiological results emphasize the need for (1) designing changes to increase safety of devices and (2) researching and developing new disinfection protocols including alternative molecules.
Collapse
Affiliation(s)
- S Ditommaso
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy.
| | - J Garlasco
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - G Memoli
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - A Curtoni
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy; Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - A Bondi
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy; Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, Turin, Italy
| | - A Ceccarelli
- Department of Clinical and Biological Sciences, University of Turin, S. Luigi Hospital, Orbassano, Italy
| | - M Giacomuzzi
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Dowdell KS, Potgieter SC, Olsen K, Lee S, Vedrin M, Caverly LJ, LiPuma JJ, Raskin L. Source-to-tap investigation of the occurrence of nontuberculous mycobacteria in a full-scale chloraminated drinking water system. Appl Environ Microbiol 2024; 90:e0060924. [PMID: 39109876 PMCID: PMC11409651 DOI: 10.1128/aem.00609-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/08/2024] [Indexed: 09/19/2024] Open
Abstract
Nontuberculous mycobacteria (NTM) in drinking water are a significant public health concern. However, an incomplete understanding of the factors that influence the occurrence of NTM in drinking water limits our ability to characterize risk and prevent infection. This study sought to evaluate the influence of season and water treatment, distribution, and stagnation on NTM in drinking water. Samples were collected source-to-tap in a full-scale, chloraminated drinking water system approximately monthly from December 2019 to November 2020. NTM were characterized using culture-dependent (plate culture with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry [MALDI-TOF MS] isolate analysis) and culture-independent methods (quantitative PCR and genome-resolved metagenomics). Sampling locations included source waters, three locations within the treatment plant, and five buildings receiving water from the distribution system. Building plumbing samples consisted of first draw, 5-min flush, and full flush cold-water samples. As the study took place during the COVID-19 pandemic, the influence of reduced water usage in three of the five buildings was also investigated. The highest NTM densities source-to-tap were found in the summer first draw building water samples (107 gene copies/L), which also had the lowest monochloramine concentrations. Flushing was found to be effective for reducing NTM and restoring disinfectant residuals, though flush times necessary to improve water quality varied by building. Clinically relevant NTM species, including Mycobacterium avium, were recovered via plate culture, with increased occurrence observed in buildings with higher water age. Four of five NTM metagenome-assembled genomes were identified to the species level and matched identified isolates.IMPORTANCENTM infections are increasing in prevalence, difficult to treat, and associated with high morbidity and mortality rates. Our lack of understanding of the factors that influence NTM occurrence in drinking water limits our ability to prevent infections, accurately characterize risk, and focus remediation efforts. In this study, we comprehensively evaluated NTM in a full-scale drinking water system, showing that various steps in treatment and distribution influence NTM presence. Stagnant building water contained the highest NTM densities source-to-tap and was associated with low disinfectant residuals. We illustrated the differences in NTM detection and characterization obtained from culture-based and culture-independent methods, highlighting the complementarity between these approaches. We demonstrated that focusing NTM mitigation efforts in building plumbing systems, which have the highest NTM densities source-to-tap, has potential for immediate positive effects. We also identified steps during treatment that increase NTM levels, which provides beneficial information for utilities seeking to reduce NTM in finished water.
Collapse
Affiliation(s)
- Katherine S. Dowdell
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Sarah C. Potgieter
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Kirk Olsen
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Soojung Lee
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew Vedrin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Lindsay J. Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - John J. LiPuma
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lutgarde Raskin
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Bolcato V, Bassetti M, Basile G, Bianco Prevot L, Speziale G, Tremoli E, Maffessanti F, Tronconi LP. The State-of-the-Art of Mycobacterium chimaera Infections and the Causal Link with Health Settings: A Systematic Review. Healthcare (Basel) 2024; 12:1788. [PMID: 39273812 PMCID: PMC11395465 DOI: 10.3390/healthcare12171788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
(1) Background. A definition of healthcare-associated infections is essential also for the attribution of the restorative burden to healthcare facilities in case of harm and for clinical risk management strategies. Regarding M. chimaera infections, there remains several issues on the ecosystem and pathogenesis. We aim to review the scientific evidence on M. chimaera beyond cardiac surgery, and thus discuss its relationship with healthcare facilities. (2) Methods. A systematic review was conducted on PubMed and Web of Science on 7 May 2024 according to PRISMA 2020 guidelines for reporting systematic reviews, including databases searches with the keyword "Mycobacterium chimaera". Article screening was conducted by tree authors independently. The criterion for inclusion was cases that were not, or were improperly, consistent with the in-situ deposition of aerosolised M. chimaera. (3) Results. The search yielded 290 eligible articles. After screening, 34 articles (377 patients) were included. In five articles, patients had undergone cardiac surgery and showed musculoskeletal involvement or disseminated infection without cardiac manifestations. In 11 articles, respiratory specimen reanalyses showed M. chimaera. Moreover, 10 articles reported lung involvement, 1 reported meninges involvement, 1 reported skin involvement, 1 reported kidney involvement after transplantation, 1 reported tendon involvement, and 1 reported the involvement of a central venous catheter; 3 articles reported disseminated cases with one concomitant spinal osteomyelitis. (4) Conclusions. The scarce data on environmental prevalence, the recent studies on M. chimaera ecology, and the medicalised sample selection bias, as well as the infrequent use of robust ascertainment of sub-species, need to be weighed up. The in-house aerosolization, inhalation, and haematogenous spread deserve experimental study, as M. chimaera cardiac localisation could depend to transient bacteraemia. Each case deserves specific ascertainment before tracing back to the facility, even if M. chimaera represents a core area for healthcare facilities within a framework of infection prevention and control policies.
Collapse
Affiliation(s)
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Giuseppe Basile
- IRCCS Orthopaedic Institute Galeazzi, 20157 Milan, Italy
- Section of Legal and Forensic Medicine Clinical Institute San Siro, 20148 Milan, Italy
| | - Luca Bianco Prevot
- IRCCS Orthopaedic Institute Galeazzi, 20157 Milan, Italy
- Residency Program in Orthopaedics and Traumatology, University of Milan, 20122 Milan, Italy
| | | | - Elena Tremoli
- GVM Care and Research, Maria Cecilia Hospital, 49033 Cotignola, Italy
| | | | - Livio Pietro Tronconi
- GVM Care and Research, Maria Cecilia Hospital, 49033 Cotignola, Italy
- Department of Human Science, European University of Rome, 00163 Rome, Italy
| |
Collapse
|
4
|
Marshall JE, Gebert MJ, Lipner EM, Salfinger M, Falkinham Iii JO, Prevots DR, Mercaldo RA. Methods of isolation and identification of nontuberculous mycobacteria from environmental samples: A scoping review. Tuberculosis (Edinb) 2023; 138:102291. [PMID: 36521261 DOI: 10.1016/j.tube.2022.102291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Nontuberculous mycobacteria (NTM) are ubiquitous in the environment. Some species of NTM are pathogenic and cause lung disease in susceptible persons. Epidemiologic studies of environmental NTM infection risk rely on both culture-dependent and culture-independent techniques for NTM isolation and identification. In this review, we summarized current methods used to isolate and identify NTM from the environment. We searched PubMed, Embase, Scopus, Web of Science: Core Collection, and Global Health (CAB Direct) for peer-reviewed studies from the last 12 years. We identified 1685 unique citations and 110 studies met our inclusion and exclusion criteria. Approximately half (55%) of the studies identified in this review used a combination of culture-independent and culture-dependent methods. The most common environmental substrate analyzed was water (n = 90). Identification of current, common methods for the isolation and identification of NTM from environmental samples may contribute to the development of standard methodological practices in the future. The choice of isolation method is based on the research question, environment, and species. A summary of common methods may contribute to the development of standard practices for isolation and identification of NTM from environmental samples, which may lead to more robust and comparable results.
Collapse
Affiliation(s)
- Julia E Marshall
- Division of Intramural Research, Epidemiology and Population Studies Unit, NIAID, NIH, Rockville, MD, USA.
| | - Matthew J Gebert
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA.
| | - Ettie M Lipner
- Division of Intramural Research, Epidemiology and Population Studies Unit, NIAID, NIH, Rockville, MD, USA.
| | - Max Salfinger
- College of Public Health & Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | | | - D Rebecca Prevots
- Division of Intramural Research, Epidemiology and Population Studies Unit, NIAID, NIH, Rockville, MD, USA.
| | - Rachel A Mercaldo
- Division of Intramural Research, Epidemiology and Population Studies Unit, NIAID, NIH, Rockville, MD, USA.
| |
Collapse
|
5
|
Ditommaso S, Giacomuzzi M, Memoli G, Garlasco J, Curtoni A, Iannaccone M, Zotti CM. A New Culture Method for the Detection of Non-Tuberculous Mycobacteria in Water Samples from Heater-Cooler Units and Extracorporeal Membrane Oxygenation Machines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10645. [PMID: 36078363 PMCID: PMC9518321 DOI: 10.3390/ijerph191710645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The isolation of non-tuberculous mycobacteria (NTM) from cultures is particularly laborious due to the potential overgrowth of coexisting non-acid fast bacilli. To reduce the overgrowth of these non-mycobacterial organisms, a decontamination step with NaOH or cetylpyridinium chloride is highly recommended before plating the samples on the culture medium. However, due to their toxicity, decontamination solutions tend to decrease NTM recovery from clinical and environmental samples. Here, we tested an alternative method for NTM recovery based on the use of NTM Elite agar, a selective medium that does not require a decontamination step. Using NTM Elite agar, we were able to detect non-tuberculous mycobacteria in 27.7% (30/108) of water samples analyzed. The average time to NTM detection was 18 days, but some strains required longer to grow, perhaps due to the stressful environmental conditions (periodical disinfection of devices). NTM Elite agar's effectiveness in inhibiting background flora was proven by the isolation of NTM from samples with and without background flora, showing no statistically significant differences in detection rates for different total viable counts of background flora (p = 0.4989). In conclusion, our findings indicate that effective NTM recovery from HCU- and ECMO-derived water samples can be achieved via filtration and direct culture of the filters on NTM Elite agar. This simple procedure can speed up laboratory work and provide an improved method, successfully resulting in low contamination and high detection rate, in addition to being less time-consuming. Its sensitivity and lack of a decontamination step make this protocol particularly useful for monitoring the effectiveness of device disinfection in hospital settings, even in the presence of low NTM loads. Reading timeframes should probably be extended to 7 weeks (i.e., well beyond the standard 4 weeks advised by the manufacturer), in order to isolate even the slow-growing mycobacteria. However, an extended incubation period is not necessary for exclusion of M. chimaera contamination of the devices, as M. chimaera isolation times do not generally exceed 3 weeks.
Collapse
Affiliation(s)
- Savina Ditommaso
- Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy
| | - Monica Giacomuzzi
- Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy
| | - Gabriele Memoli
- Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy
| | - Jacopo Garlasco
- Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy
| | - Antonio Curtoni
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Marco Iannaccone
- Microbiology and Virology Unit, University Hospital Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Carla M. Zotti
- Department of Public Health and Pediatrics, University of Turin, 10126 Torino, Italy
| |
Collapse
|
6
|
Mitigation of nontuberculous mycobacteria in hospital water: challenges for infection prevention. Curr Opin Infect Dis 2022; 35:330-338. [PMID: 35849523 DOI: 10.1097/qco.0000000000000844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize recent literature on nontuberculous mycobacteria in water of healthcare systems. Despite improvement in identification techniques and emergence of infection prevention and control programs, nontuberculous mycobacteria remain present in hospital water systems, causing outbreaks and pseudo-outbreaks in healthcare settings. RECENT FINDINGS Waterborne outbreaks and pseudo-outbreaks of nontuberculous mycobacteria continue to affect hospitals. Improvements in methods of identification and investigation, including MALDI-TOF and whole genome sequencing with evaluation of single nucleotide polymorphisms, have been used successfully in outbreak and pseudo-outbreak investigations. Recent studies have shown control of outbreaks in immunocompromised patients through the use of sterile water for consumption, as well as control of pseudo-outbreaks by using sterile water for procedures. Construction activities have been implicated in outbreaks and pseudo-outbreaks of nontuberculous mycobacteria. Water management programs are now required by the Joint Commission, which will likely improve water risk mitigation. SUMMARY Improvement in detection and identification of nontuberculous mycobacteria has led to increasing recognition of waterborne outbreaks and pseudo-outbreaks. Water management programs are of vital importance in infection prevention.
Collapse
|
7
|
A Comparison of Three Culture Media for the Detection of Rapid-Growing Nontuberculous Mycobacteria in Environmental Samples. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nontuberculous mycobacteria (NTM) are common in the environment and certain species can cause serious infections. Improved environmental surveillance methods are needed to combat the increased incidence of NTM disease. Recently, two methods were developed to improve NTM detection. The MYChrOme™ Culture Plate (patent-pending, Phigenics, LLC, Reno, NV, USA) is the first chromogenic medium for rapid-growing NTM detection in water samples. NTM Elite agar (Biomerieux, Marcy-l’Étoile, France), was developed for rapid-growing NTM detection in clinical samples. Fifty water samples (25 potable and 25 non-potable) with three technical replicates were analyzed by each method and Middlebrook 7H11 selective medium (7H11S) (ASTM E2563-07 method modified for water). The MYChrOme method was overall equivalent to or better than 7H11S medium and NTM Elite agar for the detection of rapid-growing NTM in potable water. All three methods detected similar amounts of NTM in non-potable water samples. The chromogenic property of MYChrOme allowed NTM colonies to be quickly identified and differentiated from other bacteria. Additional analysis is required for colony confirmation on 7H11S medium and NTM Elite agar. The use of innovative environmental NTM diagnostics, in addition to proper water management, can greatly reduce the risk of NTM disease.
Collapse
|