1
|
Shi K, Shi Y, Shi Y, Long F, Yin Y, Pan Y, Li Z, Feng S. Establishment of a Quadruplex RT-qPCR for the Detection of Canine Coronavirus, Canine Respiratory Coronavirus, Canine Adenovirus Type 2, and Canine Norovirus. Pathogens 2024; 13:1054. [PMID: 39770314 PMCID: PMC11728440 DOI: 10.3390/pathogens13121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 01/16/2025] Open
Abstract
Canine coronavirus (CCoV), canine respiratory coronavirus (CRCoV), canine adenovirus type 2 (CAV-2), and canine norovirus (CNV) are important pathogens for canine viral gastrointestinal and respiratory diseases. Especially, co-infections with these viruses exacerbate the damages of diseases. In this study, four pairs of primers and probes were designed to specifically amplify the conserved regions of the CCoV M gene, CRCoV N gene, CAV-2 hexon gene, and CNV RdRp gene. After optimizing different reaction conditions, a quadruplex RT-qPCR was established for the detection of CCoV, CRCoV, CAV-2, and CNV. The specificity, sensitivity, and repeatability of the established assay were evaluated. Then, the assay was used to test 1688 clinical samples from pet hospitals in Guangxi province of China during 2022-2024 to validate its clinical applicability. In addition, these samples were also assessed using the reported reference RT-qPCR assays, and the agreements between the developed and reference assays were determined. The results indicated that the quadruplex RT-qPCR could specifically test only CCoV, CRCoV, CAV-2, and CNV, without cross-reaction with other canine viruses. The assay had high sensitivity with limits of detection (LODs) of 1.0 × 102 copies/reaction for CCoV, CRCoV, CAV-2, and CNV. The repeatability was excellent, with intra-assay variability of 0.19-1.31% and inter-assay variability of 0.10-0.88%. The positivity rates of CCoV, CRCoV, CAV-2, and CNV using the developed assay were 8.59% (145/1688), 8.65% (146/1688), 2.84% (48/1688), and 1.30% (22/1688), respectively, while the positivity rates using the reference assays were 8.47% (143/1688), 8.53% (144/1688), 2.78% (47/1688), and 1.24% (21/1688), respectively, with agreements of more than 99.53% between two methods. In conclusion, a quadruplex RT-qPCR with high sensitivity, specificity, and repeatability was developed for rapid, and accurate detection of CCoV, CRCoV, CAV-2, and CNV.
Collapse
Affiliation(s)
- Kaichuang Shi
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China;
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.L.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Yandi Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.L.)
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.L.)
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| | - Yi Pan
- School of Basic Medical Sciences, Youjiang Medical University for Nationalities, Baise 533000, China;
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China; (Y.S.); (Y.S.); (Z.L.)
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (F.L.); (Y.Y.)
| |
Collapse
|
2
|
Zhou H, Li H, Sun X, Lin J, Zhang C, Zhao J, Zhao L, Zhou M. Rapid diagnosis of canine respiratory coronavirus, canine influenza virus, canine distemper virus and canine parainfluenza virus with a Taqman probe-based multiplex real-time PCR. J Virol Methods 2024; 328:114960. [PMID: 38823586 DOI: 10.1016/j.jviromet.2024.114960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Canine Infectious Respiratory Disease Complex (CIRDC) is a highly infectious diseases. Canine respiratory coronavirus (CRCoV), Canine influenza virus (CIV), Canine distemper virus (CDV), and Canine parainfluenza virus (CPiV) are crucial pathogens causing CIRDC. Due to the similar clinical symptoms induced by these viruses, differential diagnosis based solely on symptoms can be challenging. In this study, a multiplex real-time PCR assay was developed for detecting the four RNA viruses of CIRDC. Specific primers and probes were designed to target M gene of CRCoV, M gene of CIV, N gene of CDV and NP gene of CPiV. The detection limit is 10 copies/μL for CIV or CRCoV, while the detection limit of CDV or CPiV is 100 copies/μL. Intra-group and inter-group repeatability coefficient of variation (CV) were both less than 2 %. A total of 341 clinical canine samples were analyzed, and the results indicated that the method developed in our study owns a good consistency and better specificity compared with the conventional reverse transcription PCR. This study provides a new method to enable the simultaneous detection of all four pathogens in a single reaction, improving the efficiency for monitoring the prevalence of four viruses in CIRDC, which benefits the control of CIRDC.
Collapse
Affiliation(s)
- Hu Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Haoqi Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Xuehan Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Jiaqi Lin
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Chengguang Zhang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China
| | - Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| |
Collapse
|
3
|
Suhadolc Scholten S, Slavec B, Klinc P, Tozon N, Papić B, Koprivec S. Association of Mycoplasma canis with Fertility Disorders in Dogs: A Case Study Supported by Clinical Examination, PCR, 16S Microbiota Profiling, and Serology. Pathogens 2024; 13:391. [PMID: 38787243 PMCID: PMC11123722 DOI: 10.3390/pathogens13050391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
The role of Mycoplasma canis in canine fertility disorders is still poorly understood. As infection is often asymptomatic, there is an increasing need for appropriate diagnostic methods and treatment plans that would allow the reliable detection of M. canis infection and rapid alleviation of infection symptoms in affected dogs. In this study, we included 14 dogs with fertility problems and 16 dogs without fertility disorder signs. We compared clinical examination data and selected laboratory parameters (hematology and biochemistry) between the groups. We performed PCR-based detection of M. canis and 16S rRNA gene-based microbiota profiling of DNA isolated from vaginal and preputial swabs. Dog sera were tested for the presence of M. canis-specific antibodies. Hematological and selected biochemical parameters showed no differences between groups. PCR-based detection of M. canis in the samples was consistent with the results of 16S microbiota profiling. Several other bacterial taxa were also identified that could potentially be involved in different fertility disorders. Serological methods were not accurate enough since high cross-reactivity rates were observed. In the future, more accurate and efficient methods will be needed to determine the role of M. canis and its true role in the pathogenesis of specific fertility disorders in dogs.
Collapse
Affiliation(s)
- Sara Suhadolc Scholten
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (S.S.S.); (N.T.)
| | - Brigita Slavec
- Institute of Poultry, Birds, Small Mammals, and Reptiles, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia;
| | - Primož Klinc
- Clinic for Reproduction and Large Animals, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Nataša Tozon
- Small Animal Clinic, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (S.S.S.); (N.T.)
| | - Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| | - Saša Koprivec
- Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Dong J, Tsui WNT, Leng X, Fu J, Lohman M, Anderson J, Hamill V, Lu N, Porter EP, Gray M, Sebhatu T, Brown S, Pogranichniy R, Wang H, Noll L, Bai J. Validation of a real-time PCR panel for detection and quantification of nine pathogens commonly associated with canine infectious respiratory disease. MethodsX 2023; 11:102476. [PMID: 38053622 PMCID: PMC10694560 DOI: 10.1016/j.mex.2023.102476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/05/2023] [Indexed: 12/07/2023] Open
Abstract
Canine infectious respiratory disease (CIRD) is a complicated respiratory syndrome in dogs [1], [2], [3]. A panel PCR was developed [4] to detect nine pathogens commonly associated with CIRD: Mycoplasma cynos, Mycoplasma canis, Bordetella bronchiseptica; canine adenovirus type 2, canine herpesvirus 1, canine parainfluenza virus, canine distemper virus, canine influenza virus and canine respiratory coronavirus [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16]. To evaluate diagnostic performance of the assay, 740 nasal swab and lung tissue samples were collected and tested with the new assay, and compared to an older version of the assay detecting the same pathogens except that it does not differentiate the two Mycoplasma species. Results indicated that the new assay had the same level of specificity, but with higher diagnostic sensitivity and had identified additional samples with potential co-infections. To confirm the new assay is detecting the correct pathogens, samples with discrepant results between the two assays were sequence-confirmed. Spiking a high concertation target to samples carrying lower concentrations of other targets was carried out and the results demonstrated that there was no apparent interference among targets in the same PCR reaction. Another spike-in experiment was used to determine detection sensitivity between nasal swab and lung tissue samples, and similar results were obtained.•A nine-pathogen CIRD PCR panel assay had identified 139 positives from 740 clinical samples with 60 co-infections;•High-concentration target does not have apparent effect on detecting low-concentration targets;•Detection sensitivity were similar between nasal swab and lung tissue samples.
Collapse
Affiliation(s)
- Junsheng Dong
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Wai Ning Tiffany Tsui
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Xue Leng
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Jilin Agricultural University, Changchun, Jilin, China
| | - Jinping Fu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Molly Lohman
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Joseph Anderson
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Vaughn Hamill
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Nanyan Lu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Division of Biology, Kansas State University, Manhattan, Kansas, United States
| | - Elizabeth Poulsen Porter
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Mark Gray
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Tesfaalem Sebhatu
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
| | - Susan Brown
- Division of Biology, Kansas State University, Manhattan, Kansas, United States
| | - Roman Pogranichniy
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Heng Wang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, China
| | - Lance Noll
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| | - Jianfa Bai
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS 66506, United States
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
5
|
Yondo A, Kalantari AA, Fernandez-Marrero I, McKinney A, Naikare HK, Velayudhan BT. Predominance of Canine Parainfluenza Virus and Mycoplasma in Canine Infectious Respiratory Disease Complex in Dogs. Pathogens 2023; 12:1356. [PMID: 38003820 PMCID: PMC10675171 DOI: 10.3390/pathogens12111356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Canine infectious respiratory disease complex (CIRDC) is caused by different viruses and bacteria. Viruses associated with CIRDC include canine adenovirus type 2 (CAV-2), canine distemper virus (CDV), canine influenza virus (CIV), canine herpesvirus type 1 (CHV-1), canine respiratory coronavirus (CRCoV), and canine parainfluenza virus (CPIV). Bacteria associated with CIRDC include Bordetella bronchiseptica, Streptococcus equi subspecies zooepidemicus (S. zooepidemicus), and Mycoplasma spp. The present study examined the prevalence of CIRDC pathogens in specimens received by a Veterinary Diagnostic Laboratory in Georgia, USA., from 2018 to 2022. Out of 459 cases, viral agents were detected in 34% of cases and bacterial agents were detected in 58% of cases. A single pathogen was detected in 31% of cases, while two or more pathogens were identified in 24% of cases. The percentages of viral agents identified were CAV-2 (4%), CDV (3%), CPIV (16%), CRCoV (7%), and CIV (2%). The percentages of bacterial agents were B. bronchiseptica (10%), Mycoplasma canis (24%), Mycoplasma cynos (21%), and S. zooepidemicus (2%). Over the five-year period, the positive cases ranged from 2-4% for CAV-2, 1-7% for CDV, 1-4% for CHV-1, 9-22% for CPIV, 4-13% for CRCoV, and 1-4% for CIV. Overall, the most prevalent pathogens associated with CIRDC were CPIV, M. canis, and M. cynos.
Collapse
Affiliation(s)
- Aurelle Yondo
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Allen A. Kalantari
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA 31793, USA (H.K.N.)
| | - Ingrid Fernandez-Marrero
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Amy McKinney
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Hemant K. Naikare
- Tifton Veterinary Diagnostic and Investigational Laboratory, College of Veterinary Medicine, University of Georgia, Tifton, GA 31793, USA (H.K.N.)
| | - Binu T. Velayudhan
- Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
6
|
Thieulent CJ, Carossino M, Peak L, Strother K, Wolfson W, Balasuriya UBR. Development and Validation of a Panel of One-Step Four-Plex qPCR/RT-qPCR Assays for Simultaneous Detection of SARS-CoV-2 and Other Pathogens Associated with Canine Infectious Respiratory Disease Complex. Viruses 2023; 15:1881. [PMID: 37766287 PMCID: PMC10535912 DOI: 10.3390/v15091881] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Canine infectious respiratory disease complex (CIRDC) is the primary cause of respiratory disease in the canine population and is caused by a wide array of viruses and bacterial pathogens with coinfections being common. Since its recognition in late 2019, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been reported to cause respiratory disease in dogs. Therefore, the rapid detection and differentiation of SARS-CoV-2 from other common viral and bacterial agents is critical from a public health standpoint. Here, we developed and validated a panel of four one-step multiplex qPCR/RT-qPCR assays for the detection and identification of twelve pathogens associated with CIRDC (canine adenovirus-2, canine distemper virus, canine herpesvirus-1, canine influenza A virus, canine parainfluenza virus, canine pneumovirus, canine respiratory coronavirus, SARS-CoV-2, Bordetella bronchiseptica, Streptococcus equi subsp. zooepidemicus, Mycoplasma cynos, and M. canis), as well as the identification of three main CIV subtypes (i.e., H3N2, H3N8, and H1N1). All developed assays demonstrated high specificity and analytical sensitivity. This panel was used to test clinical specimens (n = 76) from CIRDC-suspected dogs. M. canis, M. cynos, and CRCoV were the most frequently identified pathogens (30.3%, 25.0%, and 19.7% of samples, respectively). The newly emerging pathogens CPnV and SARS-CoV-2 were detected in 5.3% of samples and coinfections were identified in 30.3%. This new multiplex qPCR/RT-qPCR panel is the most comprehensive panel developed thus far for identifying CIRDC pathogens, along with SARS-CoV-2.
Collapse
Affiliation(s)
- Côme J. Thieulent
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Laura Peak
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
| | - Keith Strother
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
| | - Wendy Wolfson
- Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA;
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; (C.J.T.); (M.C.); (L.P.); (K.S.)
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
7
|
Kim JM, Kim HR, Baek JS, Kwon OK, Kang HE, Shin YK, Park CK. Simple and Rapid Colorimetric Detection of Canine Parainfluenza Virus 5 ( Orthorubulavirus mammalis) Using a Reverse-Transcription Loop-Mediated Isothermal Amplification Assay. Pathogens 2023; 12:921. [PMID: 37513767 PMCID: PMC10384626 DOI: 10.3390/pathogens12070921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Despite its many advantages, a reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay has yet to be developed for canine parainfluenza virus 5 (CPIV5). In this study, a visual RT-LAMP (vRT-LAMP) assay was developed for the rapid detection of CPIV5 in clinical samples. At a constant reaction temperature of 62 °C, the assay was completed within 40 min, and the results could be directly detected with the naked eye using a hydroxynaphthol blue (HNB) metal indicator without any additional detection apparatuses. The assay specifically amplified CPIV5 RNA with a limit of detection of 10 RNA copies/reaction, which was 10-fold more sensitive than the previously reported conventional reverse-transcription polymerase chain reaction (cRT-PCR) assay and was comparable to the previously reported real-time RT-PCR (qRT-PCR) assay. In a clinical evaluation using 267 nasopharyngeal swab samples collected from hospitalized dogs with respiratory symptoms, the CPIV5 detection rate using the vRT-LAMP assay was 5.24% (14/267), which was higher than that of the cRT-PCR assay (4.49%, 12/267) and consistent with that of the qRT-PCR assay, demonstrating 100% concordance with a kappa coefficient value (95% confidence interval) of 1 (1.00-1.00). The discrepancies in the results of the assays were confirmed to be attributed to the low sensitivity of the cRT-PCR assay. Owing to the advantages of a high specificity, rapidity, and simplicity, the developed vRT-LAMP assay using an HNB metal indicator will be a valuable diagnostic tool for the detection of CPIV5 in canine clinical samples, even in resource-limited laboratories.
Collapse
Affiliation(s)
- Jong-Min Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hye-Ryung Kim
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
- DIVA Bio Incorporation, Daegu 41519, Republic of Korea
| | - Ji-Su Baek
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Oh-Kyu Kwon
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Hae-Eun Kang
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Yeun-Kyung Shin
- Foreign Animal Disease Division, Animal and Plant Quarantine Agency, Gimcheon 39660, Republic of Korea
| | - Choi-Kyu Park
- College of Veterinary Medicine & Animal Disease Intervention Center, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
An Improved Duplex Real-Time Quantitative RT-PCR Assay with a Canine Endogenous Internal Positive Control for More Sensitive and Reliable Detection of Canine Parainfluenza Virus 5. Vet Sci 2023; 10:vetsci10020142. [PMID: 36851445 PMCID: PMC9965950 DOI: 10.3390/vetsci10020142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023] Open
Abstract
A duplex real-time quantitative reverse transcription-polymerase chain reaction (dqRT-PCR) assay was successfully developed to simultaneously detect canine parainfluenza virus 5 (CPIV5) and a canine endogenous internal positive control (EIPC) in canine clinical samples. Two sets of primers and probes for the CPIV5 L and canine 16S rRNA genes were included in the dqRT-PCR assay to detect CPIV and monitor invalid results throughout the qRT-PCR process. The developed dqRT-PCR assay specifically detected CPIV5 but no other canine pathogens. Furthermore, 16S rRNA was stably amplified by dqRT-PCR assay in all samples containing canine cellular materials. The assay's sensitivity was determined as below ten RNA copies per reaction, with CPIV5 L gene standard RNA and 1 TCID50/mL with the CPIV5 D008 vaccine strain, which was 10-fold higher than that of the previous HN gene-specific qRT-PCR (HN-qRT-PCR) assays and was equivalent to that of the previous N gene-specific qRT-PCR (N-qRT-PCR) assays, respectively. Moreover, the Ct values of the CPIV5-positive samples obtained using the dqRT-PCR assay were lower than those obtained using the previous HN- and N-qRT-PCR assays, indicating that the diagnostic performance of the dqRT-PCR assay was superior to those of previous HN- and N-qRT-PCR assays. The calculated Cohen's kappa coefficient values (95% confidence interval) between dqRT-PCR and the HN- or N-specific qRT-PCR assays were 0.97 (0.90-1.03) or 1.00 (1.00-1.00), respectively. In conclusion, the newly developed dqRT-PCR assay with high sensitivity, specificity, and reliability will be a promising diagnostic tool for the detection of CPIV5 in clinical samples and useful for etiological and epidemiological studies of CPIV5 infection in dogs.
Collapse
|
9
|
Kim JM, Kim HR, Jeon GT, Baek JS, Kwon OD, Park CK. Molecular Detection of Porcine Parainfluenza Viruses 1 and 5 Using a Newly Developed Duplex Real-Time RT-PCR in South Korea. Animals (Basel) 2023; 13:ani13040598. [PMID: 36830385 PMCID: PMC9951646 DOI: 10.3390/ani13040598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Two species of porcine parainfluenza viruses (PPIV), PPIV1 and PPIV5, are globally distributed in pig herds and associated with porcine respiratory diseases, and a diagnostic tool for the simultaneous detection of the two viruses is required. In this study, a TaqMan probe-based duplex real-time reverse transcription polymerase chain reaction (dqRT-PCR) assay was first developed for the differential detection of PPIV1 and PPIV5 nucleocapsid protein (NP) genes in porcine clinical samples. The dqRT-PCR assay was highly sensitive, its limit of detection was approximately 10 RNA copies/reaction, it specifically amplified the targeted NP genes of PPIV1 and PPIV5 without cross-reacting with other porcine pathogens, and their clinical detection rates were 15.2% and 0.7%, respectively. The results from 441 clinical samples taken from 278 Korean domestic pig farms showed that the prevalence of PPIV1 and PPIV5 was 11.2% and 1.1%, respectively, and co-infection of both viruses was confirmed in a farm, suggesting that PPIV1 and PPIV5 are co-circulating in current Korean pig herds. Phylogenetic analysis based on the partial NP genes suggested that genetically diverse PPIV1 strains are circulating in Korean pig herds. The developed dqRT-PCR assay was found to be an accurate, reliable, and quantitative detection tool for PPIV1 and PPIV5 RNA in clinical pig samples and will be useful for etiological and epidemiological studies and the control of viral infections in the field.
Collapse
|