1
|
van Leuven N, Lucassen R, Dicks A, Braß P, Lipski A, Bockmühl DP. Does Antibiotic Use Contribute to Biofilm Resistance in Sink Drains? A Case Study from Four German Hospital Wards. Antibiotics (Basel) 2024; 13:1148. [PMID: 39766538 PMCID: PMC11672680 DOI: 10.3390/antibiotics13121148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Backgound. As biofilms are known to harbour (multi-)resistant species, their presence in health settings must be considered critical. Although there is evidence that bacteria spread from drains to the outside, there is still a lack of research data focusing on drain biofilms from hospitals. Methods. We sampled biofilms from various wards of Helios Hospital Krefeld (Germany), where comprehensive antibiotic consumption data were available. Biofilms were analysed by cell counting, isolation of relevant bacterial groups and genetic and phenotypical resistance parameters. Data were correlated with the prescribed antibiotics of the respective ward. Furthermore, an ex situ biofilm model was employed to investigate the influence of sub-inhibitory antibiotics on the bacterial community and the prevalence of class 1 integrons. Results. Our results show that every ward harboured medically relevant bacterial species. While no significant differences were found in cell counts, the median prevalence of the resistance marker gene intI1 correlated with the amount of prescribed antibiotics. In contrast, phenotypical resistances showed no similar tendency. In addition, melting curve analysis data and changes in intI1 prevalence show that the composition of the bacterial community shifted depending on the biofilm and antibiotic. Conclusions. To the best of our knowledge, our study is the first considering possible correlations between the consumption data of hospital wards and resistances in drain biofilms the way we did. Based on our results, we conclude that sub-inhibitory concentrations of antibiotics have no general effect on biofilms in terms of bacterial community shift and occurrence of antibiotic-resistant species. Amongst other things, the effect depends on the initial composition of the bacterial community, the antibiotic used and the intrinsic bacterial resistance, e.g., prevalence of class 1 integrons.
Collapse
Affiliation(s)
- Nicole van Leuven
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533 Kleve, Germany
- Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany;
- COMBAT AMR Project Consortium
| | - Ralf Lucassen
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533 Kleve, Germany
- COMBAT AMR Project Consortium
| | - Anna Dicks
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533 Kleve, Germany
| | - Patrick Braß
- Helios Klinikum Krefeld, Lutherplatz 40, 47805 Krefeld, Germany
| | - André Lipski
- Food Microbiology and Hygiene, University of Bonn, Friedrich-Hirzebruch-Allee 7, 53115 Bonn, Germany;
| | - Dirk P. Bockmühl
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Straße 1, 47533 Kleve, Germany
- COMBAT AMR Project Consortium
| |
Collapse
|
2
|
Lucassen R, van Leuven N, Bockmühl D. Biological and Synthetic Surfactants Increase Class I Integron Prevalence in Ex Situ Biofilms. Microorganisms 2024; 12:712. [PMID: 38674656 PMCID: PMC11052139 DOI: 10.3390/microorganisms12040712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
The role of biocides in the spread of antimicrobial resistance (AMR) has been addressed but only a few studies focus on the impact of surfactants on microbial diversity and AMR, although they are common constituents of cleaners, disinfectants, and personal care products and are thus released into the environment in large quantities. In this study, we used a static ex situ biofilm model to examine the development of four biofilms exposed to surfactants and analyzed the biofilms for their prevalence of class I integrons as a proxy for the overall abundance of AMR in a sample. We furthermore determined the shift in bacterial community composition by high-resolution melt analysis and 16S ribosomal RNA (16S rRNA) gene sequencing. Depending on the initial intrinsic prevalence of class I integrons in the respective ex situ biofilm, benzalkonium chloride, alkylbenzene sulfonate, and cocamidopropyl betaine increased its prevalence by up to 6.5× on average. For fatty alcohol ethoxylate and the biosurfactants sophorolipid and rhamnolipid, the mean increase did not exceed 2.5-fold. Across all surfactants, the increase in class I integrons was accompanied by a shift in bacterial community composition. Especially benzalkonium chloride, cocamidopropyl betaine, and alkylbenzene sulfonate changed the communities, while fatty alcohol ethoxylate, sophorolipid, and rhamnolipid had a lower effect on the bacterial biofilm composition.
Collapse
Affiliation(s)
| | | | - Dirk Bockmühl
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany; (R.L.); (N.v.L.)
| |
Collapse
|
3
|
Chen T, Zhang S, Yang J, Li Y, Kogure E, Zhu Y, Xiong W, Chen E, Shi G. Metabarcoding Analysis of Microorganisms Inside Household Washing Machines in Shanghai, China. Microorganisms 2024; 12:160. [PMID: 38257987 PMCID: PMC10819172 DOI: 10.3390/microorganisms12010160] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Washing machines are one of the tools that bring great convenience to people's daily lives. However, washing machines that have been used for a long time often develop issues such as odor and mold, which can pose health hazards to consumers. There exists a conspicuous gap in our understanding of the microorganisms that inhabit the inner workings of washing machines. In this study, samples were collected from 22 washing machines in Shanghai, China, including both water eluted from different parts of washing machines and biofilms. Quantitative qualitative analysis was performed using fluorescence PCR quantification, and microbial communities were characterized by high-throughput sequencing (HTS). This showed that the microbial communities in all samples were predominantly composed of bacteria. HTS results showed that in the eluted water samples, the bacteria mainly included Pseudomonas, Enhydrobacter, Brevibacterium, and Acinetobacter. Conversely, in the biofilm samples, Enhydrobacter and Brevibacterium were the predominant bacterial microorganisms. Correlation analysis results revealed that microbial colonies in washing machines were significantly correlated with years of use and the type of detergent used to clean the washing machine. As numerous pathogenic microorganisms can be observed in the results, effective preventive measures and future research are essential to mitigate these health problems and ensure the continued safe use of these household appliances.
Collapse
Affiliation(s)
- Tong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214000, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Shu Zhang
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
| | - Juan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214000, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214000, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Eiichi Kogure
- Kao Corporation, 1334, Minato, Wakayama 640-8580, Japan
| | - Ye Zhu
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
| | - Weiqi Xiong
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
| | - Enhui Chen
- KAO (China) Research and Development Center, No. 623, Ziri Road, Minhang District, Shanghai 100098, China (Y.Z.); (W.X.); (E.C.)
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214000, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|