1
|
Tung PW, Thaker VV, Gallagher D, Kupsco A. Mitochondrial Health Markers and Obesity-Related Health in Human Population Studies: A Narrative Review of Recent Literature. Curr Obes Rep 2024; 13:724-738. [PMID: 39287712 DOI: 10.1007/s13679-024-00588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE OF REVIEW This narrative review summarizes current literature on the relationship of mitochondrial biomarkers with obesity-related characteristics, including body mass index and body composition. RECENT FINDINGS Mitochondria, as cellular powerhouses, play a pivotal role in energy production and the regulation of metabolic process. Altered mitochondrial functions contribute to obesity, yet evidence of the intricate relationship between mitochondrial dynamics and obesity-related outcomes in human population studies is scarce and warrants further attention. We discuss emerging evidence linking obesity and related health outcomes to impaired oxidative phosphorylation pathways, oxidative stress and mtDNA variants, copy number and methylation, all hallmark of suboptimal mitochondrial function. We also explore the influence of dietary interventions and metabolic and bariatric surgery procedures on restoring mitochondrial attributes of individuals with obesity. Finally, we report on the potential knowledge gaps in the mitochondrial dynamics for human health for future study.
Collapse
Affiliation(s)
- Pei Wen Tung
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA.
| | - Vidhu V Thaker
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Dympna Gallagher
- Department of Medicine, Columbia University Irving Medical Center , New York, NY, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
2
|
Martel-Pelletier J, Pelletier JP. Is there a mitochondrial DNA haplogroup connection between osteoarthritis and elite athletes? A narrative review. RMD Open 2022; 8:rmdopen-2022-002602. [PMID: 36113964 PMCID: PMC9486370 DOI: 10.1136/rmdopen-2022-002602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022] Open
Abstract
Elite athletes are at greater risk of joint injuries linked to the subsequent risk of developing osteoarthritis (OA). Genetic factors such as mitochondrial (mt) DNA haplogroups have been associated with the incidence/progression of OA and athletic performance. This review highlights an area not yet addressed: is there a common pattern in the mtDNA haplogroups for OA occurrence in individuals and elite athletes of populations of the same descent? Haplotypes J and T confer a decreased risk of OA in Caucasian/European descent, while H and U increase this risk. Both J and T haplogroups are under-represented in Caucasian/European individuals and endurance athletes with OA, but power athletes showed a greater percentage of the J haplogroup. Caucasian/European endurance athletes had a higher percentage of haplogroup H, which is associated with increased athletic performance. In a Chinese population, haplogroup G appears to increase OA susceptibility and is over-represented in Japanese endurance athletes. In contrast, in Koreans, haplogroup B had a higher frequency of individuals with OA but was under-represented in the endurance athlete population. For Caucasian endurance athletes, it would be interesting to evaluate if those carrying haplotype H would be at an increased risk of accelerated OA, as well as the haplogroup G in Chinese and Japanese endurance athletes. The reverse might be studied for the Korean descent for haplogroup B. Knowledge of such genetic data could be used as a preliminary diagnosis to identify individuals at high risk of OA, adding prognostic information and assisting in personalising the early management of both populations.
Collapse
Affiliation(s)
- Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| |
Collapse
|
3
|
Dorji J, Vander Jagt CJ, Chamberlain AJ, Cocks BG, MacLeod IM, Daetwyler HD. Recovery of mitogenomes from whole genome sequences to infer maternal diversity in 1883 modern taurine and indicine cattle. Sci Rep 2022; 12:5582. [PMID: 35379858 PMCID: PMC8980051 DOI: 10.1038/s41598-022-09427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/18/2022] [Indexed: 11/09/2022] Open
Abstract
Maternal diversity based on a sub-region of mitochondrial genome or variants were commonly used to understand past demographic events in livestock. Additionally, there is growing evidence of direct association of mitochondrial genetic variants with a range of phenotypes. Therefore, this study used complete bovine mitogenomes from a large sequence database to explore the full spectrum of maternal diversity. Mitogenome diversity was evaluated among 1883 animals representing 156 globally important cattle breeds. Overall, the mitogenomes were diverse: presenting 11 major haplogroups, expanding to 1309 unique haplotypes, with nucleotide diversity 0.011 and haplotype diversity 0.999. A small proportion of African taurine (3.5%) and indicine (1.3%) haplogroups were found among the European taurine breeds and composites. The haplogrouping was largely consistent with the population structure derived from alternate clustering methods (e.g. PCA and hierarchical clustering). Further, we present evidence confirming a new indicine subgroup (I1a, 64 animals) mainly consisting of breeds originating from China and characterised by two private mutations within the I1 haplogroup. The total genetic variation was attributed mainly to within-breed variance (96.9%). The accuracy of the imputation of missing genotypes was high (99.8%) except for the relatively rare heteroplasmic genotypes, suggesting the potential for trait association studies within a breed.
Collapse
Affiliation(s)
- Jigme Dorji
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia.
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Benjamin G Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia.
| | - Hans D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3083, Australia
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, 3083, Australia
| |
Collapse
|
4
|
Zanini G, De Gaetano A, Selleri V, Savino G, Cossarizza A, Pinti M, Mattioli AV, Nasi M. Mitochondrial DNA and Exercise: Implications for Health and Injuries in Sports. Cells 2021; 10:cells10102575. [PMID: 34685555 PMCID: PMC8533813 DOI: 10.3390/cells10102575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/31/2022] Open
Abstract
Recently, several studies have highlighted the tight connection between mitochondria and physical activity. Mitochondrial functions are important in high-demanding metabolic activities, such as endurance sports. Moreover, regular training positively affects metabolic health by increasing mitochondrial oxidative capacity and regulating glucose metabolism. Exercise could have multiple effects, also on the mitochondrial DNA (mtDNA) and vice versa; some studies have investigated how mtDNA polymorphisms can affect the performance of general athletes and mtDNA haplogroups seem to be related to the performance of elite endurance athletes. Along with several stimuli, including pathogens, stress, trauma, and reactive oxygen species, acute and intense exercise also seem to be responsible for mtDNA release into the cytoplasm and extracellular space, leading to the activation of the innate immune response. In addition, several sports are characterized by a higher frequency of injuries, including cranial trauma, associated with neurological consequences. However, with regular exercise, circulating cell-free mtDNA levels are kept low, perhaps promoting cf-mtDNA removal, acting as a protective factor against inflammation.
Collapse
Affiliation(s)
- Giada Zanini
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy; (A.C.); (A.V.M.)
| | - Valentina Selleri
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
| | - Gustavo Savino
- Department of Public Healthcare, Sports Medicine Service, Azienda USL of Modena, 41121 Modena, Italy;
| | - Andrea Cossarizza
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy; (A.C.); (A.V.M.)
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (G.Z.); (A.D.G.); (V.S.); (M.P.)
| | - Anna Vittoria Mattioli
- National Institute for Cardiovascular Research-INRC, 40126 Bologna, Italy; (A.C.); (A.V.M.)
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-059-205-5422
| |
Collapse
|
5
|
Vellers HL, Verhein KC, Burkholder AB, Lee J, Kim Y, Lightfoot JT, Shi M, Weinberg CR, Sarzynski MA, Bouchard C, Kleeberger SR. Association between Mitochondrial DNA Sequence Variants and V˙O2 max Trainability. Med Sci Sports Exerc 2021; 52:2303-2309. [PMID: 33064405 DOI: 10.1249/mss.0000000000002390] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE We designed the study to determine whether mitochondrial DNA (mtDNA) haplogroup, sequence, and heteroplasmy differed between individuals previously characterized as low (LR) or high responders (HR) as defined by their maximal oxygen uptake response to a standardized aerobic exercise training program. METHODS DNA was isolated from whole blood in subjects from the HERITAGE Family Study that were determined to be either HR (n = 15) or LR (n = 15). mtDNA was amplified by long-range polymerase chain reaction, then tagged with Nextera libraries and sequenced on a MiSeq instrument. RESULTS Different mtDNA haplogroup subtypes were found in HR and LR individuals. Compared with HR subjects, significantly more LR subjects had variants in 13 sites, including 7 in hypervariable (HV) regions: HV2 (G185A: 0 vs 6, P = 0.02; G228A: 0 vs 5, P = 0.04; C295T: 0 vs 6; P = 0.04), HV3 (C462T: 0 vs 5, P = 0.04; T489C: 0 vs 5; P = 0.04), and HV1 (C16068T: 0 vs 6, P = 0.02; T16125C: 0 vs 6, P = 0.02). Remaining variants were in protein coding genes, mtND1 (1 vs 8, P = 0.02), mtND3 (A10397G: 0 vs 5, P = 0.04), mtND4 (A11250G: 1 vs 8, P = 0.02), mtND5 (G13707A: 0 vs 5, P = 0.04), and mtCYTB (T14797C: 0 vs 5, P = 0.04; C15451A: 1 vs 8, P = 0.02). Average total numbers of heteroplasmies (P = 0.83) and frequency of heteroplasmies (P = 0.05) were similar between the groups. CONCLUSIONS Our findings provide specific sites across the mitochondrial genome that may be related to maximal oxygen uptake trainability.
Collapse
Affiliation(s)
| | - Kirsten C Verhein
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Adam B Burkholder
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | | | | | | | - Min Shi
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Clarice R Weinberg
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | | | | | - Steven R Kleeberger
- National Institute of Environmental Health Sciences, Research Triangle Park, NC
| |
Collapse
|
6
|
Kiiskilä J, Jokelainen J, Kytövuori L, Mikkola I, Härkönen P, Keinänen-Kiukaanniemi S, Majamaa K. Association of mitochondrial DNA haplogroups J and K with low response in exercise training among Finnish military conscripts. BMC Genomics 2021; 22:75. [PMID: 33482721 PMCID: PMC7821635 DOI: 10.1186/s12864-021-07383-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/12/2021] [Indexed: 11/10/2022] Open
Abstract
Background We have previously suggested that some of the mutations defining mitochondrial DNA (mtDNA) haplogroups J and K produce an uncoupling effect on oxidative phosphorylation and thus are detrimental for elite endurance performance. Here, the association between haplogroups J and K and physical performance was determined in a population-based cohort of 1036 Finnish military conscripts. Results Following a standard-dose training period, excellence in endurance performance was less frequent among subjects with haplogroups J or K than among subjects with non-JK haplogroups (p = 0.041), and this finding was more apparent among the best-performing subjects (p < 0.001). Conclusions These results suggest that mtDNA haplogroups are one of the genetic determinants explaining individual variability in the adaptive response to endurance training, and mtDNA haplogroups J and K are markers of low-responders in exercise training. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07383-x.
Collapse
Affiliation(s)
- Jukka Kiiskilä
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland. .,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland.
| | - Jari Jokelainen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Laura Kytövuori
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| | | | - Pirjo Härkönen
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Unit of General Practice, Oulu University Hospital, Oulu, Finland
| | - Sirkka Keinänen-Kiukaanniemi
- Center for Life Course Health Research, University of Oulu, Oulu, Finland.,Unit of Primary Health Care, Oulu University Hospital, Oulu, Finland.,Healthcare and Social Services of Selänne, Pyhäjärvi, Finland
| | - Kari Majamaa
- Research Unit of Clinical Neuroscience, Neurology, University of Oulu, P.O. Box 5000, FI-90014, Oulu, Finland.,Department of Neurology and Medical Research Center, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
7
|
Can Genetic Testing Predict Talent? A Case Study of 5 Elite Athletes. Int J Sports Physiol Perform 2020; 16:429-434. [PMID: 33271500 DOI: 10.1123/ijspp.2019-0543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/17/2020] [Accepted: 04/18/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE The genetic influence on the attainment of elite athlete status is well established, with a number of polymorphisms found to be more common in elite athletes than in the general population. As such, there is considerable interest in understanding whether this information can be utilized to identify future elite athletes. Accordingly, the aim of this study was to compare the total genotype scores of 5 elite athletes to those of nonathletic controls, to subsequently determine whether genetic information could discriminate between these groups, and, finally, to suggest how these findings may inform debates relating to the potential for genotyping to be used as a talent-identification tool. METHODS The authors compared the total genotype scores for both endurance (68 genetic variants) and speed-power (48 genetic variants) elite athlete status of 5 elite track-and-field athletes, including an Olympic champion, to those of 503 White European nonathletic controls. RESULTS Using the speed-power total genotype score, the elite speed-power athletes scored higher than the elite endurance athletes; however, using this speed-power score, 68 nonathletic controls registered higher scores than the elite power athletes. Surprisingly, using the endurance total genotype score, the elite speed-power athletes again scored higher than the elite endurance athletes. CONCLUSIONS These results suggest that genetic information is not capable of accurately discriminating between elite athletes and nonathletic controls, illustrating that the use of such information as a talent-identification tool is currently unwarranted and ineffective.
Collapse
|
8
|
Sun D, Yao S, Wu F, Deng W, Ma Y, Jin L, Wang J, Wang X. Mitochondrial DNA Haplogroup M7 Confers Disability in a Chinese Aging Population. Front Genet 2020; 11:577795. [PMID: 33193696 PMCID: PMC7645148 DOI: 10.3389/fgene.2020.577795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial DNA (mtDNA) haplogroups have been associated with functional impairments (i.e., decreased gait speed and grip strength, frailty), which are risk factors of disability. However, the association between mtDNA haplogroups and ADL disability is still unclear. In this study, we conducted an investigation of 25 mtSNPs defining 17 major mtDNA haplogroups for ADL disability in an aging Chinese population. We found that mtDNA haplogroup M7 was associated with an increased risk of disability (OR = 3.18 [95% CI = 1.29-7.83], P = 0.012). The survival rate of the M7 haplogroup group (6.1%) was lower than that of the non-M7 haplogroup group (9.5%) after a 6-year follow-up. In cellular studies, cytoplasmic hybrid (cybrid) cells with the M7 haplogroup showed distinct mitochondrial functions from the M8 haplogroup. Specifically, the respiratory chain complex capacity was significantly lower in M7 haplogroup cybrids than in M8 haplogroup cybrids. Furthermore, an obvious decreased mitochondrial membrane potential and 40% reduced ATP-linked oxygen consumption were found in M7 haplogroup cybrids compared to M8 haplogroup cybrids. Notably, M7 haplogroup cybrids generated more reactive oxygen species (ROS) than M8 haplogroup cybrids. Therefore, the M7 haplogroup may contribute to the risk of disability via altering mitochondrial function to some extent, leading to decreased oxygen consumption, but increased ROS production, which may activate mitochondrial retrograde signaling pathways to impair cellular and tissue function.
Collapse
Affiliation(s)
- Dayan Sun
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Shun Yao
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Fei Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wan Deng
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yanyun Ma
- Six-sector Industrial Research Institute, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Is mitochondrial DNA profiling predictive for athletic performance? Mitochondrion 2019; 47:125-138. [PMID: 31228565 DOI: 10.1016/j.mito.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 11/20/2022]
Abstract
Mitochondrial DNA encodes some proteins of the oxidative phosphorylation enzymatic complex, playing an important role in aerobic ATP production; therefore, it can contribute to the ability to respond to endurance exercise training. The accumulation of mitochondrial mutations and the migratory processes of populations have given a great contribution to the development of haplogroups with a different distribution in the world. Several studies have shown the important role of gene polymorphisms in aerobic performance. In this review, some mitochondrial haplogroups and multiple rare alleles were taken into consideration and could be linked to the athlete's physical performance of different ethnic groups.
Collapse
|
10
|
Hwang IW, Kim K, Choi EJ, Jin HJ. Association of mitochondrial haplogroup F with physical performance in Korean population. Genomics Inform 2019; 17:e11. [PMID: 30929412 PMCID: PMC6459174 DOI: 10.5808/gi.2019.17.1.e11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
Athletic performance is a complex multifactorial trait involving genetic and
environmental factors. The heritability of an athlete status was reported to be
about 70% in a twin study, and at least 155 genetic markers are known to be
related with athlete status. Mitochondrial DNA (mtDNA) encodes essential
proteins for oxidative phosphorylation, which is related to aerobic capacity.
Thus, mtDNA is a candidate marker for determining physical performance. Recent
studies have suggested that polymorphisms of mtDNA are associated with athlete
status and/or physical performance in various populations. Therefore, we
analyzed mtDNA haplogroups to assess their association with the physical
performance of Korean population. The 20 mtDNA haplogroups were determined using
the SNaPshot assay. Our result showed a significant association of the
haplogroup F with athlete status (odds ratio, 3.04; 95% confidence interval,
1.094 to 8.464; p = 0.012). Athletes with haplogroup F (60.64 ±
3.04) also demonstrated a higher Sargent jump than athletes with other
haplogroups (54.28 ± 1.23) (p = 0.041). Thus, our data imply
that haplogroup F may play a crucial role in the physical performance of Korean
athletes. Functional studies with larger sample sizes are necessary to further
substantiate these findings.
Collapse
Affiliation(s)
- In Wook Hwang
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Kicheol Kim
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
| | - Eun Ji Choi
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| | - Han Jun Jin
- Department of Biological Sciences, College of Natural Science, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
11
|
Bybjerg-Grauholm J, Hagen CM, Gonçalves VF, Bækvad-Hansen M, Hansen CS, Hedley PL, Kanters JK, Nielsen J, Theisen M, Mors O, Kennedy J, Als TD, Demur AB, Nordentoft M, Børglum A, Mortensen PB, Werge TM, Hougaard DM, Christiansen M. Complex spatio-temporal distribution and genomic ancestry of mitochondrial DNA haplogroups in 24,216 Danes. PLoS One 2018; 13:e0208829. [PMID: 30543675 PMCID: PMC6292624 DOI: 10.1371/journal.pone.0208829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial DNA (mtDNA) haplogroups (hgs) are evolutionarily conserved sets of mtDNA SNP-haplotypes with characteristic geographical distribution. Associations of hgs with disease and physiological characteristics have been reported, but have frequently not been reproducible. Using 418 mtDNA SNPs on the PsychChip (Illumina), we assessed the spatio-temporal distribution of mtDNA hgs in Denmark from DNA isolated from 24,642 geographically un-biased dried blood spots (DBS), collected from 1981 to 2005 through the Danish National Neonatal Screening program. ADMIXTURE was used to establish the genomic ancestry of all samples using a reference of 100K+ autosomal SNPs in 2,248 individuals from nine populations. Median-joining analysis determined that the hgs were highly variable, despite being typically Northern European in origin, suggesting multiple founder events. Furthermore, considerable heterogeneity and variation in nuclear genomic ancestry was observed. Thus, individuals with hg H exhibited 95%, and U hgs 38.2% - 92.5%, Danish ancestry. Significant clines between geographical regions and rural and metropolitan populations were found. Over 25 years, macro-hg L increased from 0.2% to 1.2% (p = 1.1*E-10), and M from 1% to 2.4% (p = 3.7*E-8). Hg U increased among the R macro-hg from 14.1% to 16.5% (p = 1.9*E-3). Genomic ancestry, geographical skewedness, and sub-hg distribution suggested that the L, M and U increases are due to immigration. The complex spatio-temporal dynamics and genomic ancestry of mtDNA in the Danish population reflect repeated migratory events and, in later years, net immigration. Such complexity may explain the often contradictory and population-specific reports of mito-genomic association with disease.
Collapse
Affiliation(s)
| | - Christian M. Hagen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | | | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Christine S. Hansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Paula L. Hedley
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Jørgen K. Kanters
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jimmi Nielsen
- Aalborg Psychiatric Hospital. Aalborg University Hospital, Aalborg, Denmark
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ole Mors
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - James Kennedy
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Thomas D. Als
- Institute of Medical Genetics, Aarhus University, Aarhus, Denmark
| | - Alfonso B. Demur
- Mental Health Centre, Sct Hans, Capital Region of Denmark, Denmark
| | | | - Anders Børglum
- Institute of Medical Genetics, Aarhus University, Aarhus, Denmark
| | - Preben B. Mortensen
- Center for Register Research, Institute of Economics, Aarhus University, Århus, Denmark
| | - Thomas M. Werge
- Mental Health Centre, Sct Hans, Capital Region of Denmark, Denmark
| | - David M. Hougaard
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
12
|
Wone BWM, Yim WC, Schutz H, Meek TH, Garland T. Mitochondrial haplotypes are not associated with mice selectively bred for high voluntary wheel running. Mitochondrion 2018; 46:134-139. [PMID: 29626644 DOI: 10.1016/j.mito.2018.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
Abstract
Mitochondrial haplotypes have been associated with human and rodent phenotypes, including nonshivering thermogenesis capacity, learning capability, and disease risk. Although the mammalian mitochondrial D-loop is highly polymorphic, D-loops in laboratory mice are identical, and variation occurs elsewhere mainly between nucleotides 9820 and 9830. Part of this region codes for the tRNAArg gene and is associated with mitochondrial densities and number of mtDNA copies. We hypothesized that the capacity for high levels of voluntary wheel-running behavior would be associated with mitochondrial haplotype. Here, we analyzed the mtDNA polymorphic region in mice from each of four replicate lines selectively bred for 54 generations for high voluntary wheel running (HR) and from four control lines (Control) randomly bred for 54 generations. Sequencing the polymorphic region revealed a variable number of adenine repeats. Single nucleotide polymorphisms (SNPs) varied from 2 to 3 adenine insertions, resulting in three haplotypes. We found significant genetic differentiations between the HR and Control groups (Fst = 0.779, p ≤ 0.0001), as well as among the replicate lines of mice within groups (Fsc = 0.757, p ≤ 0.0001). Haplotypes, however, were not strongly associated with voluntary wheel running (revolutions run per day), nor with either body mass or litter size. This system provides a useful experimental model to dissect the physiological processes linking mitochondrial, genomic SNPs, epigenetics, or nuclear-mitochondrial cross-talk to exercise activity.
Collapse
Affiliation(s)
- Bernard W M Wone
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA; Department of Biology, University of South Dakota, Vermillion, SD 57069, USA.
| | - Won C Yim
- Department of Biochemistry & Molecular Biology, University of Nevada, Reno, NV 89557, USA
| | - Heidi Schutz
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA; Biology Department, Pacific Lutheran University, Tacoma, WA 98447, USA
| | - Thomas H Meek
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA; In Vivo Pharmacology Research Unit, Novo Nordisk, Seattle, WA 98109, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
13
|
Ebner S, Mangge H, Langhof H, Halle M, Siegrist M, Aigner E, Paulmichl K, Paulweber B, Datz C, Sperl W, Kofler B, Weghuber D. Mitochondrial Haplogroup T Is Associated with Obesity in Austrian Juveniles and Adults. PLoS One 2015; 10:e0135622. [PMID: 26322975 PMCID: PMC4556186 DOI: 10.1371/journal.pone.0135622] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/24/2015] [Indexed: 12/20/2022] Open
Abstract
Background Recent publications have reported contradictory data regarding mitochondrial DNA (mtDNA) variation and its association with body mass index. The aim of the present study was to compare the frequencies of mtDNA haplogroups as well as control region (CR) polymorphisms of obese juveniles (n = 248) and obese adults (n = 1003) versus normal weight controls (njuvenile = 266, nadults = 595) in a well-defined, ethnically homogenous, age-matched comparative cohort of Austrian Caucasians. Methodology and Principal Findings Using SNP analysis and DNA sequencing, we identified the nine major European mitochondrial haplogroups and CR polymorphisms. Of these, only the T haplogroup frequency was increased in the juvenile obese cohort versus the control subjects [11.7% in obese vs. 6.4% in controls], although statistical significance was lost after adjustment for sex and age. Similar data were observed in a local adult cohort, in which haplogroup T was found at a significantly higher frequency in the overweight and obese subjects than in the normal weight group [9.7% vs. 6.2%, p = 0.012, adjusted for sex and age]. When all obese subjects were considered together, the difference in the frequency of haplogroup T was even more clearly seen [10.1% vs. 6.3%, p = 0.002, OR (95% CI) 1.71 (1.2–2.4), adjusted for sex and age]. The frequencies of the T haplogroup-linked CR polymorphisms C16294T and the C16296T were found to be elevated in both the juvenile and the adult obese cohort compared to the controls. Nevertheless, no mtDNA haplogroup or CR polymorphism was robustly associated with any of several investigated metabolic and cardiovascular parameters (e.g., blood pressure, blood glucose concentration, triglycerides, cholesterol) in all obese subjects. Conclusions and Significance By investigation of this large ethnically and geographically homogenous cohort of Middle European Caucasians, only mtDNA haplogroup T was identified as an obesity risk factor.
Collapse
Affiliation(s)
- Sabine Ebner
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Harald Mangge
- Clinical Institute for Medical and Chemical Laboratory Diagnostics, Medical University Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | | | - Martin Halle
- Department of Prevention, Rehabilitation and Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Else Kröner-Fresenius-Zentrum, Klinikum rechts der Isar, Munich, Germany
| | - Monika Siegrist
- Department of Prevention, Rehabilitation and Sports Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Elmar Aigner
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria
| | - Katharina Paulmichl
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria
| | - Bernhard Paulweber
- Department of Internal Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Christian Datz
- Department of Internal Medicine, General Hospital Oberndorf, Oberndorf, Austria
| | - Wolfgang Sperl
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Daniel Weghuber
- Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- Obesity Research Unit, Paracelsus Medical University and Salzburger Landeskliniken, Salzburg, Austria
- * E-mail:
| |
Collapse
|
14
|
Abstract
Understanding the genetic architecture of athletic performance is an important step in the development of methods for talent identification in sport. Research concerned with molecular predictors has highlighted a number of potentially important DNA polymorphisms contributing to predisposition to success in certain types of sport. This review summarizes the evidence and mechanistic insights on the associations between DNA polymorphisms and athletic performance. A literature search (period: 1997-2014) revealed that at least 120 genetic markers are linked to elite athlete status (77 endurance-related genetic markers and 43 power/strength-related genetic markers). Notably, 11 (9%) of these genetic markers (endurance markers: ACE I, ACTN3 577X, PPARA rs4253778 G, PPARGC1A Gly482; power/strength markers: ACE D, ACTN3 Arg577, AMPD1 Gln12, HIF1A 582Ser, MTHFR rs1801131 C, NOS3 rs2070744 T, PPARG 12Ala) have shown positive associations with athlete status in three or more studies, and six markers (CREM rs1531550 A, DMD rs939787 T, GALNT13 rs10196189 G, NFIA-AS1 rs1572312 C, RBFOX1 rs7191721 G, TSHR rs7144481 C) were identified after performing genome-wide association studies (GWAS) of African-American, Jamaican, Japanese, and Russian athletes. On the other hand, the significance of 29 (24%) markers was not replicated in at least one study. Future research including multicenter GWAS, whole-genome sequencing, epigenetic, transcriptomic, proteomic, and metabolomic profiling and performing meta-analyses in large cohorts of athletes is needed before these findings can be extended to practice in sport.
Collapse
Affiliation(s)
- Ildus I Ahmetov
- Sport Technology Research Center, Volga Region State Academy of Physical Culture, Sport and Tourism, Kazan, Russia; Laboratory of Molecular Genetics, Kazan State Medical University, Kazan, Russia.
| | - Olga N Fedotovskaya
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
15
|
Guan X, Silva P, Gyenai K, Xu J, Geng T, Smith E. Mitochondrial DNA-Based Analyses of Relatedness Among Turkeys, Meleagris gallopavo. Biochem Genet 2015; 53:29-41. [PMID: 25820210 DOI: 10.1007/s10528-015-9668-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 02/27/2015] [Indexed: 10/23/2022]
Abstract
The domesticated turkey, Meleagris gallopavo, is believed to be a single breed with several varieties whose relatedness and origins remain poorly understood. Using the mitochondrial genome sequence (GenBank accession no. EF153719) that our group first reported, we investigated the relationships among 15 of the most widely occurring turkey varieties using D-loop and 16S RNA sequences. We included, as a non-traditional outgroup, mtDNA sequence information from wild turkey varieties. A total of 24 SNPs, including 18 in the D-loop and 6 in the 16S rRNA, was identified, validated and used. Of the 15 haplotypes detected based on these SNPs, 7 were unique to wild turkeys. Nucleotide diversity estimates were relatively low when compared to those reported for chickens and other livestock. Network and phylogenetic analyses showed a closer relationship among heritage varieties than between heritage and wild turkeys. The mtDNA data provide additional evidence that suggest a recent divergence of turkey varieties.
Collapse
Affiliation(s)
- Xiaojing Guan
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, VA, 24061, USA,
| | | | | | | | | | | |
Collapse
|
16
|
mtDNA haplogroups and osteoarthritis in different geographic populations. Mitochondrion 2014; 15:18-23. [PMID: 24632472 DOI: 10.1016/j.mito.2014.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 01/29/2014] [Accepted: 03/03/2014] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To compare the frequency distribution of the mtDNA haplogroups in OA patients and healthy controls between the United Kingdom (UK) and Spain. METHODS We used the single base extension (SBE) assay to obtain the European mtDNA haplogroups in 1471 OA patients and 406 healthy controls from Spain, and 453 OA patients and 280 healthy controls from the UK. Some differential haplogroup J-related single nucleotide polymorphisms (SNPs) between both populations were analyzed. The whole data was analyzed with SPSS software (v.18) following appropriate approaches that included chi-square contingency tables and logistic regression models adjusting by gender and age. RESULTS The haplogroup J appeared underrepresented in OA patients from Spain when compared with healthy controls (OR=0.636; 95% CI: 0.444-0.911; p=0.013). Individuals from the UK carrying the haplogroup T showed a decreased risk of OA (OR=0.574; 95% CI: 0.350-0.939; p=0.027). The comparison of the frequency distribution of the haplogroup J between the UK and Spain showed a decreased presence of this haplogroup in healthy controls from the UK when compared with healthy controls from Spain that is in borderline of the statistical significance (p=0.06). The analysis of some haplogroup J-related SNPs in OA patients and healthy controls from Spain and the UK showed that the SNP m.3394t>c appeared underrepresented in the UK cohort (p=0.038). CONCLUSIONS The proposed mitochondrial uncoupling mechanism derived from the mtDNA haplogroups J and T could be behind their protective role against OA. The different association found in Spain and the UK could reflect the adaptation of the mtDNA haplogroups to different climatic patterns. The genetic composition of the haplogroup J between the UK and Spain seems to be slightly different, being the m.3394t>c SNP one of the differentially expressed haplogroup J-related polymorphisms.
Collapse
|
17
|
Riley LG, Menezes MJ, Rudinger-Thirion J, Duff R, de Lonlay P, Rotig A, Tchan MC, Davis M, Cooper ST, Christodoulou J. Phenotypic variability and identification of novel YARS2 mutations in YARS2 mitochondrial myopathy, lactic acidosis and sideroblastic anaemia. Orphanet J Rare Dis 2013; 8:193. [PMID: 24344687 PMCID: PMC3878580 DOI: 10.1186/1750-1172-8-193] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/13/2013] [Indexed: 12/21/2022] Open
Abstract
Background Mutations in the mitochondrial tyrosyl-tRNA synthetase (YARS2) gene have previously been identified as a cause of the tissue specific mitochondrial respiratory chain (RC) disorder, Myopathy, Lactic Acidosis, Sideroblastic Anaemia (MLASA). In this study, a cohort of patients with a mitochondrial RC disorder for who anaemia was a feature, were screened for mutations in YARS2. Methods Twelve patients were screened for YARS2 mutations by Sanger sequencing. Clinical data were compared. Functional assays were performed to confirm the pathogenicity of the novel mutations and to investigate tissue specific effects. Results PathogenicYARS2 mutations were identified in three of twelve patients screened. Two patients were found to be homozygous for the previously reported p.Phe52Leu mutation, one severely and one mildly affected. These patients had different mtDNA haplogroups which may contribute to the observed phenotypic variability. A mildly affected patient was a compound heterozygote for two novel YARS2 mutations, p.Gly191Asp and p.Arg360X. The p.Gly191Asp mutation resulted in a 38-fold loss in YARS2 catalytic efficiency and the p.Arg360X mutation did not produce a stable protein. The p.Phe52Leu and p.Gly191Asp/p.Arg360X mutations resulted in more severe RC deficiency of complexes I, III and IV in muscle cells compared to fibroblasts, but had relatively normal YARS2 protein levels. The muscle-specific RC deficiency can be related to the increased requirement for RC complexes in muscle. There was also a failure of mtDNA proliferation upon myogenesis in patient cells which may compound the RC defect. Patient muscle had increased levels of PGC1-α and TFAM suggesting mitochondrial biogenesis was activated as a potential compensatory mechanism. Conclusion In this study we have identified novel YARS2 mutations and noted marked phenotypic variability among YARS2 MLASA patients, with phenotypes ranging from mild to lethal, and we suggest that the background mtDNA haplotype may be contributing to the phenotypic variability. These findings have implications for diagnosis and prognostication of the MLASA and related phenotypes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - John Christodoulou
- Genetic Metabolic Disorders Research Unit, Kids Research Institute, Children's Hospital at Westmead 2145, Sydney, Australia.
| |
Collapse
|
18
|
Mikami E, Fuku N, Kong QP, Takahashi H, Ohiwa N, Murakami H, Miyachi M, Higuchi M, Tanaka M, Pitsiladis YP, Kawahara T. Comprehensive analysis of common and rare mitochondrial DNA variants in elite Japanese athletes: a case–control study. J Hum Genet 2013; 58:780-7. [DOI: 10.1038/jhg.2013.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 12/26/2022]
|
19
|
Haplogroup T is an obesity risk factor: mitochondrial DNA haplotyping in a morbid obese population from southern Italy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:631082. [PMID: 23936828 PMCID: PMC3713591 DOI: 10.1155/2013/631082] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/03/2013] [Indexed: 11/26/2022]
Abstract
Mitochondrial DNA (mtDNA) haplogroups have been associated with the expression of mitochondrial-related diseases and with metabolic alterations, but their role has not yet been investigated in morbid obese Caucasian subjects. Therefore, we investigated the association between mitochondrial haplogroups and morbid obesity in patients from southern Italy. The mtDNA D-loop of morbid obese patients (n = 500; BMI > 40 kg/m2) and controls (n = 216; BMI < 25 kg/m2) was sequenced to determine the mtDNA haplogroups. The T and J haplogroup frequencies were higher and lower, respectively, in obese subjects than in controls. Women bearing haplogroup T or J had twice or half the risk of obesity. Binomial logistic regression analysis showed that haplogroup T and systolic blood pressure are risk factors for a high degree of morbid obesity, namely, BMI > 45 kg/m2 and in fact together account for 8% of the BMI. In conclusion, our finding that haplogroup T increases the risk of obesity by about two-fold, suggests that, besides nuclear genome variations and environmental factors, the T haplogroup plays a role in morbid obesity in our study population from southern Italy.
Collapse
|
20
|
Mueller EE, Brunner SM, Mayr JA, Stanger O, Sperl W, Kofler B. Functional differences between mitochondrial haplogroup T and haplogroup H in HEK293 cybrid cells. PLoS One 2012; 7:e52367. [PMID: 23300652 PMCID: PMC3530588 DOI: 10.1371/journal.pone.0052367] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/15/2012] [Indexed: 12/20/2022] Open
Abstract
Background Epidemiological case-control studies have revealed associations between mitochondrial haplogroups and the onset and/or progression of various multifactorial diseases. For instance, mitochondrial haplogroup T was previously shown to be associated with vascular diseases, including coronary artery disease and diabetic retinopathy. In contrast, haplogroup H, the most frequent haplogroup in Europe, is often found to be more prevalent in healthy control subjects than in patient study groups. However, justifications for the assumption that haplogroups are functionally distinct are rare. Therefore, we attempted to compare differences in mitochondrial function between haplogroup H and T cybrids. Methodology/Principal Findings Mitochondrial haplogroup H and T cybrids were generated by fusion of HEK293 cells devoid of mitochondrial DNA with isolated thrombocytes of individuals with the respective haplogroups. These cybrid cells were analyzed for oxidative phosphorylation (OXPHOS) enzyme activities, mitochondrial DNA (mtDNA) copy number, growth rate and susceptibility to reactive oxygen species (ROS). We observed that haplogroup T cybrids have higher survival rate when challenged with hydrogen peroxide, indicating a higher capability to cope with oxidative stress. Conclusions/Significance The results of this study show that functional differences exist between HEK293 cybrid cells which differ in mitochondrial genomic background.
Collapse
Affiliation(s)
- Edith E. Mueller
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Susanne M. Brunner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Johannes A. Mayr
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Olaf Stanger
- Department of Cardiac Surgery, Paracelsus Medical University, Salzburg, Austria
| | - Wolfgang Sperl
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria
- * E-mail:
| |
Collapse
|
21
|
Maruszak A, Adamczyk JG, Siewierski M, Sozański H, Gajewski A, Żekanowski C. Mitochondrial DNA variation is associated with elite athletic status in the Polish population. Scand J Med Sci Sports 2012; 24:311-8. [PMID: 23163620 DOI: 10.1111/sms.12012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2012] [Indexed: 12/17/2022]
Abstract
There is mounting evidence that genetic factors located in mitochondrial and nuclear genomes influence sport performance. Certain mitochondrial haplogroups and polymorphisms were associated with the status of elite athlete, especially in endurance performance. The aim of our study was to assess whether selected mitochondrial DNA (mtDNA) and nuclear DNA variants are associated with elite athlete performance in a group of 395 elite Polish athletes (213 endurance athletes and 182 power athletes) and 413 sedentary controls. Our major finding was that the mtDNA haplogroup H and HV cluster influence endurance performance at the Olympic/World Class level of performance (P = 0.018 and P = 0.0185, respectively). We showed that two polymorphisms located in the mtDNA control region were associated with achieving the elite performance level either in the total athlete's group as compared with controls (m.16362C, 3.8% vs 9.2%, respectively, P = 0.0025, odds ratio = 0.39, 95% confidence interval: 0.21-0.72), or in the endurance athletes as compared with controls (m.16080G, 2.35% vs 0%, respectively, P = 0.004). Our results indicate that mtDNA variability affects the endurance capacity rather than the power one. We also propose that mtDNA haplogroups and subhaplogroups, as well as individual mtDNA polymorphisms favoring endurance performance, could be population-specific, reflecting complex cross-talk between nuclear and mitochondrial genomes.
Collapse
Affiliation(s)
- A Maruszak
- Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warszawa, Poland
| | | | | | | | | | | |
Collapse
|
22
|
Kim KC, Jin HJ, Kim W. Mitochondrial haplogroup B is negatively associated with elite Korean endurance athlete status. Genes Genomics 2012. [DOI: 10.1007/s13258-012-0037-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Mikami E, Fuku N, Takahashi H, Ohiwa N, Pitsiladis YP, Higuchi M, Kawahara T, Tanaka M. Polymorphisms in the control region of mitochondrial DNA associated with elite Japanese athlete status. Scand J Med Sci Sports 2012; 23:593-9. [PMID: 22288660 DOI: 10.1111/j.1600-0838.2011.01424.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2011] [Indexed: 11/29/2022]
Abstract
The control region of mitochondrial DNA (mtDNA) contains the main regulatory elements for mtDNA replication and transcription. Certain polymorphisms in this region would, therefore, contribute to elite athletic performance, because mitochondrial function is one of determinants of physical performance. The present study was undertaken to examine the effect of polymorphisms in this region on elite athlete status by sequencing the mtDNA control region. Subjects comprised 185 elite Japanese athletes who had represented Japan at international competitions (i.e., 100 endurance/middle-power athletes: EMA; 85 sprint/power athletes: SPA), and 672 Japanese controls (CON). The mtDNA control region was analyzed by direct sequencing. Frequency differences of polymorphisms (minor allele frequency ≥ 0.05) in the mtDNA control region between EMA, SPA, and CON were examined. EMA displayed excess of three polymorphisms [m.152T>C, m.514(CA)n repeat (n ≥ 5), and poly-C stretch at m.568-573 (C ≥ 7)] compared with CON. On the other hand, SPA showed greater frequency of the m.204T>C polymorphism compared with CON. In addition, none of the SPA had m.16278C>T polymorphism, whereas the frequencies of this polymorphism in CON and EMA were 8.3% and 10.0%, respectively. These findings imply that several polymorphisms detected in the control region of mtDNA may influence physical performance probably in a functional manner.
Collapse
Affiliation(s)
- E Mikami
- Graduate School of Sport Sciences, Waseda University, Saitama, Japan; Japan Society for the Promotion of Science, Tokyo, Japan; Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
A rare combination of mutations within mitochondrial DNA subhaplogroup T2e is identified as affiliated with Sephardic Jews, a group that has received relatively little attention. Four investigations were pursued: Search of the motif in 250 000 control region records across 8 databases, comparison of frequencies of T subhaplogroups (T1, T2b, T2c, T2e, T4, T(*)) across 11 diverse populations, creation of a phylogenic median-joining network from public T2e control region entries, and analysis of one Sephardic mitochondrial full genomic sequence with the motif. It was found that the rare motif belonged only to Sephardic descendents (Turkey, Bulgaria), to inhabitants of North American regions known for secret Spanish-Jewish colonization, or were consistent with Sephardic ancestry. The incidence of subhaplogroup T2e decreased from the Western Arabian Peninsula to Italy to Spain and into Western Europe. The ratio of sister subhaplogroups T2e to T2b was found to vary 40-fold across populations from a low in the British Isles to a high in Saudi Arabia with the ratio in Sephardim more similar to Saudi Arabia, Egypt, and Italy than to hosts Spain and Portugal. Coding region mutations of 2308G and 14499T may locate the Sephardic signature within T2e, but additional samples and reworking of current T2e phylogenetic branch structure is needed. The Sephardic Turkish community has a less pronounced founder effect than some Ashkenazi groups considered singly (eg, Polish), but other comparisons of interest await comparable averaging. Registries of signatures will benefit the study of populations with a large number of smaller-size founders.
Collapse
|
25
|
Nogales-Gadea G, Pinós T, Ruiz JR, Marzo PF, Fiuza-Luces C, López-Gallardo E, Ruiz-Pesini E, Martín MA, Arenas J, Morán M, Andreu AL, Lucia A. Are mitochondrial haplogroups associated with elite athletic status? A study on a Spanish cohort. Mitochondrion 2011; 11:905-8. [DOI: 10.1016/j.mito.2011.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 12/31/2022]
|
26
|
Abstract
Clinical and experimental studies in humans provide evidence that moderate physical activity significantly decreases artery oxidative damage to nuclear DNA, DNA-adducts related to age and dyslipedemia, and mitochondrial DNA damage. Maintenance of adequate mitochondrial function is crucial for preventing lipid accumulation and peroxidation occurring in atherosclerosis. Studies performed on human muscle biopsies analyzing gene expression in living humans reveal that physically active subjects improve the expression of genes involved in mitochondrial function and of related microRNAs. The attenuation of oxidative damage to nuclear and mitochondrial DNA by physical activity resulted in beneficial effects due to polymorphisms of glutathione S-transferases genes. Subjects bearing null GSTM1/T1 polymorphisms have poor life expectancy in the case of being sedentary, which was increased 2.6-fold in case they performed physical activity. These findings indicate that the preventive effect of physical activity undergoes interindividual variation affected by genetic polymorphisms.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Health Sciences, Faculty of Medicine, University of Genoa, Genoa, Italy.
| |
Collapse
|
27
|
Eynon N, Morán M, Birk R, Lucia A. The champions' mitochondria: is it genetically determined? A review on mitochondrial DNA and elite athletic performance. Physiol Genomics 2011; 43:789-98. [DOI: 10.1152/physiolgenomics.00029.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aerobic ATP generation by the mitochondrial respiratory oxidative phosphorylation system (OXPHOS) is a vital metabolic process for endurance exercise. Notably, mitochondrial DNA (mtDNA) codifies 13 of the 83 polypeptides implied in the respiratory chain. As such, there is a strong rationale for identifying an association between mtDNA variants and “aerobic” (endurance) exercise phenotypes. The aim of this review is to summarize current knowledge on the association between mtDNA, nuclear genes involved in mitochondriogenesis, and elite endurance athletic status. Several studies in nonathletic people have demonstrated an association between certain mtDNA lineages and aerobic performance, characterized by maximal oxygen uptake (V̇o2max). Whether mtDNA haplogroups are also associated with the status of being an elite endurance athlete is more controversial, with differences between studies arising from the different ethnic backgrounds of the athletic cohorts (Caucasian of mixed geographic origin, Asiatic, or East African).
Collapse
Affiliation(s)
- Nir Eynon
- Faculty of Health Sciences, Department of Nutrition, Ariel University Center, Israel; and
| | - María Morán
- Centro de Investigación Hospital 12 de Octubre and CIBERER and
| | - Ruth Birk
- Faculty of Health Sciences, Department of Nutrition, Ariel University Center, Israel; and
| | | |
Collapse
|
28
|
PGC-1alpha downstream transcription factors NRF-1 and TFAM are genetic modifiers of Huntington disease. Mol Neurodegener 2011; 6:32. [PMID: 21595933 PMCID: PMC3117738 DOI: 10.1186/1750-1326-6-32] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 05/19/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Huntington disease (HD) is an inherited neurodegenerative disease caused by an abnormal expansion of a CAG repeat in the huntingtin HTT (HD) gene. The primary genetic determinant of the age at onset (AO) is the length of the HTT CAG repeat; however, the remaining genetic contribution to the AO of HD has largely not been elucidated. Recent studies showed that impaired functioning of the peroxisome proliferator-activated receptor gamma coactivator 1a (PGC-1alpha) contributes to mitochondrial dysfunction and appears to play an important role in HD pathogenesis. Further genetic evidence for involvement of PGC-1alpha in HD pathogenesis was generated by the findings that sequence variations in the PPARGC1A gene encoding PGC-1alpha exert modifying effects on the AO in HD. In this study, we hypothesised that polymorphisms in PGC-1alpha downstream targets might also contribute to the variation in the AO. RESULTS In over 400 German HD patients, polymorphisms in the nuclear respiratory factor 1 gene, NRF-1, and the mitochondrial transcription factor A, encoded by TFAM showed nominally significant association with AO of HD. When combining these results with the previously described modifiers rs7665116 in PPARGC1A and C7028T in the cytochrome c oxidase subunit I (CO1, mt haplogroup H) in a multivariable model, a substantial proportion of the variation in AO can be explained by the joint effect of significant modifiers and their interactions, respectively. CONCLUSIONS These results underscore that impairment of mitochondrial function plays a critical role in the pathogenesis of HD and that upstream transcriptional activators of PGC-1alpha may be useful targets in the treatment of HD.
Collapse
|
29
|
Deason M, Scott R, Irwin L, Macaulay V, Fuku N, Tanaka M, Irving R, Charlton V, Morrison E, Austin K, Pitsiladis YP. Importance of mitochondrial haplotypes and maternal lineage in sprint performance among individuals of West African ancestry. Scand J Med Sci Sports 2011; 22:217-23. [DOI: 10.1111/j.1600-0838.2010.01289.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
30
|
Wang H, Dai J. [Changes on mitochondrial DNA content in non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:141-5. [PMID: 21342645 PMCID: PMC5999772 DOI: 10.3779/j.issn.1009-3419.2011.02.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
背景与目的 已有的研究表明:线粒体DNA(mitochondrial DNA, mtDNA)突变和拷贝数的改变和肿瘤有着密切联系;大多数实体性肿瘤中mtDNA拷贝数有明显降低。本研究旨在探讨线粒体基因组含量的改变和原发性非小细胞肺癌(non-small cell lung cancer, NSCLC)的关系。 方法 通过实时荧光定量PCR,对肺癌及相对应的癌旁肺组织mtDNA的含量进行精确定量(拷贝数/细胞)。 结果 肺癌组织mtDNA的平均拷贝数/细胞为395±125,而相对应的正常肺组织为733±196,前者明显低于后者(P < 0.001)。肺癌mtDNA含量的改变与患者性别、年龄、是否吸烟及肿瘤的病理类型无关(P > 0.05)。 结论 mtDNA含量的改变与NSCLC的发生发展密切相关,同时也可能影响其治疗和预后。
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Thoracic Surgery, Xinqiao Hospital, Chongqing 400037, China
| | | |
Collapse
|
31
|
Ienco EC, Simoncini C, Orsucci D, Petrucci L, Filosto M, Mancuso M, Siciliano G. May "mitochondrial eve" and mitochondrial haplogroups play a role in neurodegeneration and Alzheimer's disease? Int J Alzheimers Dis 2011; 2011:709061. [PMID: 21423558 PMCID: PMC3056451 DOI: 10.4061/2011/709061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/29/2010] [Indexed: 12/26/2022] Open
Abstract
Mitochondria, the powerhouse of the cell, play a critical role in several metabolic processes and apoptotic pathways. Multiple evidences suggest that mitochondria may be crucial in ageing-related neurodegenerative diseases. Moreover, mitochondrial haplogroups have been linked to multiple area of medicine, from normal ageing to diseases, including neurodegeneration. Polymorphisms within the mitochondrial genome might lead to impaired energy generation and to increased amount of reactive oxygen species, having either susceptibility or protective role in several diseases. Here, we highlight the role of the mitochondrial haplogroups in the pathogenetic cascade leading to diseases, with special attention to Alzheimer's disease.
Collapse
Affiliation(s)
- Elena Caldarazzo Ienco
- Department of Neuroscience, Neurological Clinic, University of Pisa, Via Roma 67, 56126 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Wallace DC. Mitochondrial DNA mutations in disease and aging. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:440-450. [PMID: 20544884 DOI: 10.1002/em.20586] [Citation(s) in RCA: 265] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The human mitochondrial genome involves over 1,000 genes, dispersed across the maternally inherited mitochondrial DNA (mtDNA) and the biparentally inherited nuclear DNA (nDNA). The mtDNA encodes 13 core proteins that determine the efficiency of the mitochondrial energy-generating system, oxidative phosphorylation (OXPHOS), plus the RNA genes for their translation within the mitochondrion. The mtDNA has a very high mutation rate, which results in three classes of clinically relevant mtDNA mutations: recently deleterious germline line mutations resulting in mitochondrial disease; ancient regional variants, a subset of which permitted humans to adapt to differences in their energetic environments; and somatic mutations that accumulate with age eroding mitochondrial energy production and providing the aging clock. Mutations in nDNA-encoded OXPHOS structural genes can also cause mitochondrial disease, and alterations in nDNA mitochondrial biogenesis genes can destabilize the mtDNA and lead to clinical phenotypes. Finally, when combined, nonpathogenic nDNA and mtDNA protein variants can be functionally incompatible and cause disease. The essential functions of the conserved mtDNA proteins and their high mutation rate raise the question as to why the cumulative mtDNA genetic load does not result in species extinction. Studies of mice harboring deleterious mtDNA mutations have shown that the mammalian ovary selectively eliminates the most deleterious mtDNA mutations. However, milder mtDNA mutations are transmitted through the ovary and the female germline and introduced into the general population. This unique genetic system provides a flexible method for generating genetic variation in cellular and organismal energetics that permits species to adapt to alterations in their regional energetic environment.
Collapse
Affiliation(s)
- Douglas C Wallace
- ORU for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA, USA.
| |
Collapse
|
33
|
Rankinen T, Roth SM, Bray MS, Loos R, Pérusse L, Wolfarth B, Hagberg JM, Bouchard C. Advances in exercise, fitness, and performance genomics. Med Sci Sports Exerc 2010; 42:835-46. [PMID: 20400881 DOI: 10.1249/mss.0b013e3181d86cec] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An annual review publication of the most significant articles in exercise, fitness, and performance genomics begins with this article, which covers 2 yr, 2008 and 2009. The review emphasizes the strongest articles as defined by sample size, quality of phenotype measurements, quality of the exercise program or physical activity exposure, study design, adjustment for multiple testing, quality of genotyping, and other related study characteristics. With this avowed focus on the highest quality articles, only a small number of published articles are reviewed. Among the most significant findings reported here are a brief overview of the first genome-wide association study of the genetic differences between exercisers and nonexercisers. In addition, the latest results on the actinin alpha 3 (ACTN3) R577X nonsense polymorphism are reviewed, emphasizing that no definitive conclusion can be reached at this time. Recent studies that have dealt with mitochondrial DNA haplogroups and endurance performance are described. Published reports indicating that physical activity may attenuate the effect of the fat mass and obesity associated (FTO) gene risk allele on body mass index are reviewed. Articles that have tested the contributions of specific genes to the response of glucose and insulin metabolism traits to regular exercise or physical activity level are considered and found to be generally inconclusive at this stage. Studies examining ethnic differences in the response of blood lipids and lipoproteins to exercise training cannot unequivocally relate these to apolipoprotein E (APOE) genotypes. Hemodynamic changes with exercise training were reported to be associated to sequence variation in kinesin heavy chain (KIF5B), but no replication study is available as of yet. We conclude from this first installment that exercise scientists need to prioritize high-quality research designs and that replication studies with large sample sizes are urgently needed.
Collapse
Affiliation(s)
- Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808-4124, USA.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Performance enhancing polymorphisms (PEPs) are examples of natural genetic variation that affect the outcome of athletic challenges. Elite athletes, and what separates them from the average competitor, have been the subjects of discussion and debate for decades. While training, diet, and mental fitness are all clearly important contributors to achieving athletic success, the fact that individuals reaching the pinnacle of their chosen sports often share both physical and physiological attributes suggests a role for genetics. That multiple members of a family often participate in highly competitive events, such as the Olympics, further supports this argument. In this review, we discuss what is known regarding the genes and gene families, including the mitochondrial genome, that are believed to play a role in human athletic performance. Where possible, we describe the physiological impact of the critical gene variants and consider predictions about other potentially important genes. Finally, we discuss the implications of these findings on the future for competitive athletics.
Collapse
Affiliation(s)
- Elaine A Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
35
|
Marcuello A, Martínez-Redondo D, Dahmani Y, Terreros JL, Aragonés T, Casajús JA, Echavarri JM, Quílez J, Montoya J, López-Pérez MJ, Díez-Sánchez C. Steady exercise removes VO(2max) difference between mitochondrial genomic variants. Mitochondrion 2009; 9:326-30. [PMID: 19427920 DOI: 10.1016/j.mito.2009.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 04/21/2009] [Accepted: 04/29/2009] [Indexed: 11/26/2022]
Abstract
It has been clearly established that mitochondrial variants, among other potential factors, influence on VO(2max). With this study we sought to determine whether this genetic predisposition could be modified by steady exercise. Mitochondrial genetic variants were determined in 70 healthy controls (CON) and in 77 athletes who trained regularly (50 cyclists, aerobic training (AER), and 27 runners of 400m, anaerobic training (NoAER)). All of them were male Spanish Caucasian individuals. A maximum graded exercise test (GXT) in cycle-ergometer was performed to determine VO(2max) (mL kg(-1)min(-1)). Our results confirmed that, in CON, VO(2max) (P=0.007) was higher in Non-J than J individuals. Furthermore, we found that AER and NoAER showed, as it could be expected, higher VO(2max) than CON, but not differences between mitochondrial variants have been found. According with these findings, the influence of mitochondrial DNA (mtDNA) variants on VO(2max) has been confirmed, and a new conclusion has arisen: the steady exercise is able to remove this influence. The interest of these promising findings in muscular performance should be further explored, in particular, the understanding of potential applications in sport training and in muscle pathological syndromes.
Collapse
Affiliation(s)
- Ana Marcuello
- Departamento de Bioquímica y Biología Molecular y Celular y CIBER de Enfermedades Raras, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
SCOTT ROBERTA, FUKU NORIYUKI, ONYWERA VINCENTO, BOIT MIKE, WILSON RICHARDH, TANAKA MASASHI, H. GOODWIN WILLIAM, PITSILADIS YANNISP. Mitochondrial Haplogroups Associated with Elite Kenyan Athlete Status. Med Sci Sports Exerc 2009; 41:123-8. [DOI: 10.1249/mss.0b013e31818313a2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|