1
|
Lozano O, Marcos P, Salazar-Ramirez FDJ, Lázaro-Alfaro AF, Sobrevia L, García-Rivas G. Targeting the mitochondrial Ca 2+ uniporter complex in cardiovascular disease. Acta Physiol (Oxf) 2023; 237:e13946. [PMID: 36751976 DOI: 10.1111/apha.13946] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Cardiovascular diseases (CVDs), the leading cause of death worldwide, share in common mitochondrial dysfunction, in specific a dysregulation of Ca2+ uptake dynamics through the mitochondrial Ca2+ uniporter (MCU) complex. In particular, Ca2+ uptake regulates the mitochondrial ATP production, mitochondrial dynamics, oxidative stress, and cell death. Therefore, modulating the activity of the MCU complex to regulate Ca2+ uptake, has been suggested as a potential therapeutic approach for the treatment of CVDs. Here, the role and implications of the MCU complex in CVDs are presented, followed by a review of the evidence for MCU complex modulation, genetically and pharmacologically. While most approaches have aimed within the MCU complex for the modulation of the Ca2+ pore channel, the MCU subunit, its intra- and extra- mitochondrial implications, including Ca2+ dynamics, oxidative stress, post-translational modifications, and its repercussions in the cardiac function, highlight that targeting the MCU complex has the translational potential for novel CVDs therapeutics.
Collapse
Affiliation(s)
- Omar Lozano
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Biomedical Research Center, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
| | - Patricio Marcos
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Felipe de Jesús Salazar-Ramirez
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Anay F Lázaro-Alfaro
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
| | - Luis Sobrevia
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- Cellular and Molecular Physiology Laboratory, Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, Queensland, Australia
| | - Gerardo García-Rivas
- Cátedra de Cardiología y Medicina Vascular, School of Medicine and Health Sciences, Tecnologico de Monterrey, Monterrey, Mexico
- Biomedical Research Center, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Monterrey, Mexico
- Center of Functional Medicine, Hospital Zambrano-Hellion, TecSalud, Tecnologico de Monterrey, San Pedro Garza García, Mexico
| |
Collapse
|
2
|
Di Chiara T, Del Cuore A, Daidone M, Scaglione S, Norrito RL, Puleo MG, Scaglione R, Pinto A, Tuttolomondo A. Pathogenetic Mechanisms of Hypertension-Brain-Induced Complications: Focus on Molecular Mediators. Int J Mol Sci 2022; 23:2445. [PMID: 35269587 PMCID: PMC8910319 DOI: 10.3390/ijms23052445] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence that hypertension is the most important vascular risk factor for the development and progression of cardiovascular and cerebrovascular diseases. The brain is an early target of hypertension-induced organ damage and may manifest as stroke, subclinical cerebrovascular abnormalities and cognitive decline. The pathophysiological mechanisms of these harmful effects remain to be completely clarified. Hypertension is well known to alter the structure and function of cerebral blood vessels not only through its haemodynamics effects but also for its relationships with endothelial dysfunction, oxidative stress and inflammation. In the last several years, new possible mechanisms have been suggested to recognize the molecular basis of these pathological events. Accordingly, this review summarizes the factors involved in hypertension-induced brain complications, such as haemodynamic factors, endothelial dysfunction and oxidative stress, inflammation and intervention of innate immune system, with particular regard to the role of Toll-like receptors that have to be considered dominant components of the innate immune system. The complete definition of their prognostic role in the development and progression of hypertensive brain damage will be of great help in the identification of new markers of vascular damage and the implementation of innovative targeted therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonino Tuttolomondo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, “G. D’Alessandro”, University of Palermo, Piazza delle Cliniche n.2, 90127 Palermo, Italy; (T.D.C.); (A.D.C.); (M.D.); (S.S.); (R.L.N.); (M.G.P.); (R.S.); (A.P.)
| |
Collapse
|
3
|
Chaiyarit S, Thongboonkerd V. Mitochondrial Dysfunction and Kidney Stone Disease. Front Physiol 2020; 11:566506. [PMID: 33192563 PMCID: PMC7606861 DOI: 10.3389/fphys.2020.566506] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondrion is a pivotal intracellular organelle that plays crucial roles in regulation of energy production, oxidative stress, calcium homeostasis, and apoptosis. Kidney stone disease (nephrolithiasis/urolithiasis), particularly calcium oxalate (CaOx; the most common type), has been shown to be associated with oxidative stress and tissue inflammation/injury. Recent evidence has demonstrated the involvement of mitochondrial dysfunction in CaOx crystal retention and aggregation as well as Randall’s plaque formation, all of which are the essential mechanisms for kidney stone formation. This review highlights the important roles of mitochondria in renal cell functions and provides the data obtained from previous investigations of mitochondria related to kidney stone disease. In addition, mechanisms for the involvement of mitochondrial dysfunction in the pathophysiology of kidney stone disease are summarized. Finally, future perspectives on the novel approach to prevent kidney stone formation by mitochondrial preservation are discussed.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
E Silva LFS, Brito MD, Yuzawa JMC, Rosenstock TR. Mitochondrial Dysfunction and Changes in High-Energy Compounds in Different Cellular Models Associated to Hypoxia: Implication to Schizophrenia. Sci Rep 2019; 9:18049. [PMID: 31792231 PMCID: PMC6889309 DOI: 10.1038/s41598-019-53605-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia (SZ) is a multifactorial mental disorder, which has been associated with a number of environmental factors, such as hypoxia. Considering that numerous neural mechanisms depends on energetic supply (ATP synthesis), the maintenance of mitochondrial metabolism is essential to keep cellular balance and survival. Therefore, in the present work, we evaluated functional parameters related to mitochondrial function, namely calcium levels, mitochondrial membrane potential, redox homeostasis, high-energy compounds levels and oxygen consumption, in astrocytes from control (Wistar) and Spontaneously Hypertensive Rats (SHR) animals exposed both to chemical and gaseous hypoxia. We show that astrocytes after hypoxia presented depolarized mitochondria, disturbances in Ca2+ handling, destabilization in redox system and alterations in ATP, ADP, Pyruvate and Lactate levels, in addition to modification in NAD+/NADH ratio, and Nfe2l2 and Nrf1 expression. Interestingly, intrauterine hypoxia also induced augmentation in mitochondrial biogenesis and content. Altogether, our data suggest that hypoxia can induce mitochondrial deregulation and a decrease in energy metabolism in the most prevalent cell type in the brain, astrocytes. Since SHR are also considered an animal model of SZ, our results can likewise be related to their phenotypic alterations and, therefore, our work also allow an increase in the knowledge of this burdensome disorder.
Collapse
|
5
|
Pal A, Pal A, Banerjee S, Batabyal S, Chatterjee PN. Mutation in Cytochrome B gene causes debility and adverse effects on health of sheep. Mitochondrion 2019; 46:393-404. [PMID: 30660753 DOI: 10.1016/j.mito.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/02/2018] [Accepted: 10/24/2018] [Indexed: 12/14/2022]
Abstract
Cytochrome B is the mitochondrial protein, which functions as part of the electron transport chain and is the main subunit of transmembrane cytochrome bc1 and b6f complexes affecting energy metabolism through oxidative phosphorylation. The present study was conducted to study the effect of mutation of Cytochrome B gene on the health condition of sheep, which the first report of association of mitochondrial gene with disease traits in livestock species. Non-synonymous substitutions (F33 L and D171N) and Indel mutations were observed for Cytochrome B gene, leading to a truncated protein, where anemia, malfunctioning of most of the vital organs as liver, kidney and mineral status was observed and debility with exercise intolerance and cardiomyopathy in extreme cases were depicted. These findings were confirmed by bioinformatics analysis, haematological and biochemical data analysis, and other phenotypical physiological data pertaining to different vital organs. The molecular mechanism of cytochrome B mutation was that the mutant variant interferes with the site of heme binding (iron containing) domain and calcium binding essential for electron transport chain. Mutation at amino acid site 33 is located within transmembrane helix A, a hydrophobic environment at the Qi site and close to heme binding domain, and mutation effects these domain and diseases occur. Thermodynamic stability was also observed to decrease in mutant variant. Sheep Cytochrome B being genetically more similar to the human, it may be used as a model for studying human diseases related to cytochrome B defects. Future prospect of the study includes the therapeutic application of recombinant protein, gene therapy and marker-assisted selection of disease-resistant livestock.
Collapse
Affiliation(s)
- Aruna Pal
- West Bengal University of Animal and Fishery Sciences, 37, K.B.Sarani, Kolkata-37, West Bengal, India.
| | - Abantika Pal
- Indian Institute of Technology, Kharagpur, Paschim Medinipur, West Bengal, India
| | - Samiddha Banerjee
- West Bengal University of Animal and Fishery Sciences, 37, K.B.Sarani, Kolkata-37, West Bengal, India
| | - S Batabyal
- West Bengal University of Animal and Fishery Sciences, 37, K.B.Sarani, Kolkata-37, West Bengal, India
| | - P N Chatterjee
- West Bengal University of Animal and Fishery Sciences, 37, K.B.Sarani, Kolkata-37, West Bengal, India
| |
Collapse
|
6
|
Usa K, Liu Y, Geurts AM, Cheng Y, Lazar J, Baker MA, Grzybowski M, He Y, Tian Z, Liang M. Elevation of fumarase attenuates hypertension and can result from a nonsynonymous sequence variation or increased expression depending on rat strain. Physiol Genomics 2017; 49:496-504. [PMID: 28754823 DOI: 10.1152/physiolgenomics.00063.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 11/22/2022] Open
Abstract
The activity of fumarase, an enzyme in the tricarboxylic acid cycle, is lower in Dahl salt-sensitive SS rats compared with SS.13BN rats. SS.13BN rats have a Brown Norway (BN) allele of fumarase and exhibit attenuated hypertension. The SS allele of fumarase differs from the BN allele by a K481E sequence variation. It remains unknown whether higher fumarase activities can attenuate hypertension and whether the mechanism is relevant without the K481E variation. We developed SS-TgFh1 transgenic rats overexpressing fumarase on the background of the SS rat. Hypertension was attenuated in SS-TgFh1 rats. Mean arterial pressure in SS-TgFh1 rats was 20 mmHg lower than transgene-negative SS littermates after 12 days on a 4% NaCl diet. Fumarase overexpression decreased H2O2, while fumarase knockdown increased H2O2 Ectopically expressed BN form of fumarase had higher specific activity than the SS form. However, sequencing of more than a dozen rat strains indicated most rat strains including salt-insensitive Sprague-Dawley (SD) rats had the SS allele of fumarase. Despite that, total fumarase enzyme activity in the renal medulla was still higher in SD rats than in SS rats, which was associated with higher expression of fumarase in SD. H2O2 can suppress the expression of fumarase. Renal medullary interstitial administration of fumarase siRNA in SD rats resulted in higher blood pressure on the high-salt diet. These findings indicate elevation of total fumarase activity attenuates the development of hypertension and can result from a nonsynonymous sequence variation in some rat strains and higher expression in other rat strains.
Collapse
Affiliation(s)
- Kristie Usa
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yong Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Aron M Geurts
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yuan Cheng
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Nephrology, Shenzhen Second People's Hospital and the First Affiliated Hospital of Shenzhen University, Shenzhen, China; and
| | - Jozef Lazar
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Maria Angeles Baker
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael Grzybowski
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yongcheng He
- Department of Nephrology, Shenzhen Second People's Hospital and the First Affiliated Hospital of Shenzhen University, Shenzhen, China; and
| | - Zhongmin Tian
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingyu Liang
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin;
| |
Collapse
|
7
|
Wang B, Xiong S, Lin S, Xia W, Li Q, Zhao Z, Wei X, Lu Z, Wei X, Gao P, Liu D, Zhu Z. Enhanced Mitochondrial Transient Receptor Potential Channel, Canonical Type 3-Mediated Calcium Handling in the Vasculature From Hypertensive Rats. J Am Heart Assoc 2017; 6:e005812. [PMID: 28711865 PMCID: PMC5586301 DOI: 10.1161/jaha.117.005812] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/11/2017] [Indexed: 12/18/2022]
Abstract
BACKGROUND Mitochondrial Ca2+ homeostasis is fundamental to the regulation of mitochondrial reactive oxygen species (ROS) generation and adenosine triphosphate production. Recently, transient receptor potential channel, canonical type 3 (TRPC3), has been shown to localize to the mitochondria and to play a role in maintaining mitochondrial calcium homeostasis. Inhibition of TRPC3 attenuates vascular calcium influx in spontaneously hypertensive rats (SHRs). However, it remains elusive whether mitochondrial TRPC3 participates in hypertension by increasing mitochondrial calcium handling and ROS production. METHODS AND RESULTS In this study we demonstrated increased TRPC3 expression in purified mitochondria in the vasculature from SHRs, which facilitates enhanced mitochondrial calcium uptake and ROS generation compared with Wistar-Kyoto rats. Furthermore, inhibition of TRPC3 by its specific inhibitor, Pyr3, significantly decreased the vascular mitochondrial ROS production and H2O2 synthesis and increased adenosine triphosphate content. Administration of telmisartan can improve these abnormalities. This beneficial effect was associated with improvement of the mitochondrial respiratory function through recovering the activity of pyruvate dehydrogenase in the vasculature of SHRs. In vivo, chronic administration of telmisartan suppressed TRPC3-mediated excessive mitochondrial ROS generation and vasoconstriction in the vasculature of SHRs. More importantly, TRPC3 knockout mice exhibited significantly ameliorated hypertension through reduction of angiotensin II-induced mitochondrial ROS generation. CONCLUSIONS Together, we give experimental evidence for a potential mechanism by which enhanced TRPC3 activity at the cytoplasmic and mitochondrial levels contributes to redox signaling and calcium dysregulation in the vasculature from SHRs. Angiotensin II or telmisartan can regulate [Ca2+]mito, ROS production, and mitochondrial energy metabolism through targeting TRPC3.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Antihypertensive Agents/pharmacology
- Benzimidazoles/pharmacology
- Benzoates/pharmacology
- Blood Pressure
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Disease Models, Animal
- Energy Metabolism
- Hypertension/drug therapy
- Hypertension/genetics
- Hypertension/metabolism
- Hypertension/physiopathology
- Male
- Mice, Knockout
- Mitochondria/drug effects
- Mitochondria/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Oxidation-Reduction
- Rats, Inbred SHR
- Rats, Inbred WKY
- Reactive Oxygen Species/metabolism
- TRPC Cation Channels/genetics
- TRPC Cation Channels/metabolism
- Telmisartan
- Time Factors
- Up-Regulation
- Vasoconstriction
Collapse
Affiliation(s)
- Bin Wang
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Shiqiang Xiong
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Shaoyang Lin
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Weijie Xia
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Qiang Li
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Zhigang Zhao
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Xing Wei
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Zongshi Lu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Xiao Wei
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Peng Gao
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| | - Zhiming Zhu
- Center for Hypertension and Metabolic Diseases, Department of Hypertension and Endocrinology, Daping Hospital, Third Military Medical University Chongqing Institute of Hypertension, Chongqing, China
| |
Collapse
|
8
|
Murugan M, Santhakumar V, Kannurpatti SS. Facilitating Mitochondrial Calcium Uptake Improves Activation-Induced Cerebral Blood Flow and Behavior after mTBI. Front Syst Neurosci 2016; 10:19. [PMID: 27013987 PMCID: PMC4782040 DOI: 10.3389/fnsys.2016.00019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/19/2016] [Indexed: 11/13/2022] Open
Abstract
Mild to moderate traumatic brain injury (mTBI) leads to secondary neuronal loss via excitotoxic mechanisms, including mitochondrial Ca(2+) overload. However, in the surviving cellular population, mitochondrial Ca(2+) influx, and oxidative metabolism are diminished leading to suboptimal neuronal circuit activity and poor prognosis. Hence we tested the impact of boosting neuronal electrical activity and oxidative metabolism by facilitating mitochondrial Ca(2+) uptake in a rat model of mTBI. In developing rats (P25-P26) sustaining an mTBI, we demonstrate post-traumatic changes in cerebral blood flow (CBF) in the sensorimotor cortex in response to whisker stimulation compared to sham using functional Laser Doppler Imaging (fLDI) at adulthood (P67-P73). Compared to sham, whisker stimulation-evoked positive CBF responses decreased while negative CBF responses increased in the mTBI animals. The spatiotemporal CBF changes representing underlying neuronal activity suggested profound changes to neurovascular activity after mTBI. Behavioral assessment of the same cohort of animals prior to fLDI showed that mTBI resulted in persistent contralateral sensorimotor behavioral deficit along with ipsilateral neuronal loss compared to sham. Treating mTBI rats with Kaempferol, a dietary flavonol compound that enhanced mitochondrial Ca(2+) uptake, eliminated the inter-hemispheric asymmetry in the whisker stimulation-induced positive CBF responses and the ipsilateral negative CBF responses otherwise observed in the untreated and vehicle-treated mTBI animals in adulthood. Kaempferol also improved somatosensory behavioral measures compared to untreated and vehicle treated mTBI animals without augmenting post-injury neuronal loss. The results indicate that reduced mitochondrial Ca(2+) uptake in the surviving populations affect post-traumatic neural activation leading to persistent behavioral deficits. Improvement in sensorimotor behavior and spatiotemporal neurovascular activity following kaempferol treatment suggests that facilitation of mitochondrial Ca(2+) uptake in the early window after injury may sustain optimal neural activity and metabolism and contribute to improved function of the surviving cellular populations after mTBI.
Collapse
Affiliation(s)
- Madhuvika Murugan
- Department of Radiology, Rutgers New Jersey Medical School Newark, NJ, USA
| | - Vijayalakshmi Santhakumar
- Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School Newark, NJ, USA
| | | |
Collapse
|
9
|
Pathogenesis of target organ damage in hypertension: role of mitochondrial oxidative stress. Int J Mol Sci 2014; 16:823-39. [PMID: 25561233 PMCID: PMC4307277 DOI: 10.3390/ijms16010823] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/26/2014] [Indexed: 12/12/2022] Open
Abstract
Hypertension causes target organ damage (TOD) that involves vasculature, heart, brain and kidneys. Complex biochemical, hormonal and hemodynamic mechanisms are involved in the pathogenesis of TOD. Common to all these processes is an increased bioavailability of reactive oxygen species (ROS). Both in vitro and in vivo studies explored the role of mitochondrial oxidative stress as a mechanism involved in the pathogenesis of TOD in hypertension, especially focusing on atherosclerosis, heart disease, renal failure, cerebrovascular disease. Both dysfunction of mitochondrial proteins, such as uncoupling protein-2 (UCP2), superoxide dismutase (SOD) 2, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α), calcium channels, and the interaction between mitochondria and other sources of ROS, such as NADPH oxidase, play an important role in the development of endothelial dysfunction, cardiac hypertrophy, renal and cerebral damage in hypertension. Commonly used anti-hypertensive drugs have shown protective effects against mitochondrial-dependent oxidative stress. Notably, few mitochondrial proteins can be considered therapeutic targets on their own. In fact, antioxidant therapies specifically targeted at mitochondria represent promising strategies to reduce mitochondrial dysfunction and related hypertensive TOD. In the present article, we discuss the role of mitochondrial oxidative stress as a contributing factor to hypertensive TOD development. We also provide an overview of mitochondria-based treatment strategies that may reveal useful to prevent TOD and reduce its progression.
Collapse
|
10
|
Increased mitochondrial activity in renal proximal tubule cells from young spontaneously hypertensive rats. Kidney Int 2013; 85:561-9. [PMID: 24132210 PMCID: PMC3943540 DOI: 10.1038/ki.2013.397] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 08/01/2013] [Accepted: 08/15/2013] [Indexed: 01/11/2023]
Abstract
Renal proximal tubule cells from spontaneously hypertensive rats (SHR), compared with normotensive Wistar-Kyoto rats (WKY), have increased oxidative stress. The contribution of mitochondrial oxidative phosphorylation to the subsequent hypertensive phenotype remains unclear. We found that renal proximal tubule cells from SHR, relative to WKY, had significantly higher basal oxygen consumption rates, ATP synthesis-linked oxygen consumption rates, and maximum and reserve respiration. These bioenergetic parameters indicated increased mitochondrial function in renal proximal tubule cells from SHR compared with WKY. Pyruvate dehydrogenase complex activity was consistently higher in both renal proximal tubule cells and cortical homogenates from SHR than WKY. Treatment for 6 days with dichloroacetate, an inhibitor of pyruvate dehydrogenase kinase, significantly increased renal pyruvate dehydrogenase complex activity and systolic blood pressure in 3-week old WKY and SHR. Therefore, mitochondrial oxidative phosphorylation is higher in renal proximal tubule cells from SHR compared with WKY. Thus the pyruvate dehydrogenase complex is a determinant of increased mitochondrial metabolism that could be a causal contributor to the hypertension in SHR.
Collapse
|
11
|
Zhu J, Rebecchi MJ, Wang Q, Glass PSA, Brink PR, Liu L. Chronic Tempol treatment restores pharmacological preconditioning in the senescent rat heart. Am J Physiol Heart Circ Physiol 2013; 304:H649-59. [DOI: 10.1152/ajpheart.00794.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cardioprotective effects of anesthetic preconditioning and cyclosporine A (CsA) are lost with aging. To extend our previous work and address a possible mechanism underlying age-related differences, we investigated the role of oxidative stress in the aging heart by treating senescent animals with the oxygen free radical scavenger Tempol. Old male Fischer 344 rats (22–24 mo) were randomly assigned to control or Tempol treatment groups for 2 or 4 wk (T×2wk and T×4wk, respectively). Rats received isoflurane 30 min before ischemia-reperfusion injury or CsA just before reperfusion. Myocardial infarction sizes were significantly reduced by isoflurane or CsA in the aged rats treated with Tempol (T×4wk) compared with old control rats. In other experiments, young (4–6 mo) and old rats underwent either chronic Tempol or vehicle treatment, and the levels of myocardial protein oxidative damage, antioxidant enzymes, mitochondrial Ca2+ uptake, cyclophilin D protein, and mitochondrial permeability transition pore opening times were measured. T×4wk significantly increased MnSOD enzyme activity, GSH-to-GSSH ratios, MnSOD protein level, mitochondrial Ca2+ uptake capacity, reduced protein nitrotyrosine levels, and normalized cyclophilin D protein expression in the aged rat heart. T×4wk also significantly prolonged mitochondrial permeability transition pore opening times induced by reactive oxygen species in old cardiomyocytes. Our studies demonstrate that 4 wk of Tempol pretreatment restores anesthetic preconditioning and cardioprotection by CsA in the old rat and that this is associated with decreased oxidative stress and improved mitochondrial function. Our results point to a new protective strategy for the ischemic myocardium in the high-risk older population.
Collapse
Affiliation(s)
- Jiang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
- Department of Anesthesiology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Mario J. Rebecchi
- Department of Anesthesiology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Qiang Wang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, People's Republic of China; and
| | - Peter S. A. Glass
- Department of Anesthesiology, Stony Brook University School of Medicine, Stony Brook, New York
| | - Peter R. Brink
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, New York
| | - Lixin Liu
- Department of Anesthesiology, Stony Brook University School of Medicine, Stony Brook, New York
| |
Collapse
|
12
|
Strutyns'ka NA, Dorofeieva NO, Vavilova HL, Sahach. VF. Increase in the sensitivity of the mitochondrial permeability transition pore opening to Ca2+ in heart of spontaneous hypertensive rat. ACTA ACUST UNITED AC 2012. [DOI: 10.15407/fz58.06.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Ferreira FM, Palmeira CM, Oliveira MM, Santos D, Simões AM, Rocha SM, Coimbra MA, Peixoto F. Nerolidol effects on mitochondrial and cellular energetics. Toxicol In Vitro 2011; 26:189-96. [PMID: 22138475 DOI: 10.1016/j.tiv.2011.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 11/12/2011] [Accepted: 11/14/2011] [Indexed: 12/28/2022]
Abstract
In the present work, we evaluated the potential toxic effects of nerolidol, a sesquiterpenoid common in plants essential oils, both on mitochondrial and cellular energetics. Samples of enriched natural extracts of nerolidol (a racemic mixture of cis and trans isomers) were tested on rat liver mitochondria and a decrease in phosphorylative system was observed but not in the mitochondrial respiratory chain activity, which reflects a direct effect on F1-ATPase. Hence, respiratory control ratio was also decreased. Cellular ATP/ADP levels were significantly decreased in a concentration-dependent manner, possibly due to the direct effect of nerolidol on F(0)F(1)-ATPsynthase. Nerolidol stimulates respiratory activity probably due to an unspecific effect, since it does not show any protonophoric effect. Furthermore, we observed that mitochondrial permeability transition was delayed in the presence of nerolidol, possibly due to its antioxidant activity and because this compound decreases mitochondrial transmembrane electric potential. Our results also show that, in human hepatocellular liver carcinoma cell line (HepG2), nerolidol both induces cell death and arrests cell growth, probably related with the observed lower bioenergetic efficiency.
Collapse
Affiliation(s)
- Fernanda M Ferreira
- CERNAS, Department of Environment, Agricultural College of Coimbra, Coimbra, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Le Pennec S, Mirebeau-Prunier D, Boutet-Bouzamondo N, Jacques C, Guillotin D, Lauret E, Houlgatte R, Malthièry Y, Savagner F. Nitric oxide and calcium participate in the fine regulation of mitochondrial biogenesis in follicular thyroid carcinoma cells. J Biol Chem 2011; 286:18229-39. [PMID: 21454643 PMCID: PMC3093895 DOI: 10.1074/jbc.m110.217521] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 03/29/2011] [Indexed: 11/06/2022] Open
Abstract
Members of the peroxisome proliferator-activated receptor γ coactivator-1 family (i.e. PGC-1α, PGC-1β, and the PGC-1-related coactivator (PRC)) are key regulators of mitochondrial biogenesis and function. These regulators serve as mediators between environmental or endogenous signals and the transcriptional machinery governing mitochondrial biogenesis. The FTC-133 and RO82 W-1 follicular thyroid carcinoma cell lines, which present significantly different numbers of mitochondria, metabolic mechanisms, and expression levels of PRC and PGC-1α, may employ retrograde signaling in response to respiratory dysfunction. Nitric oxide (NO) and calcium have been hypothesized to participate in this activity. We investigated the effects of the S-nitroso-N-acetyl-DL-penicillamine-NO donor, on the expression of genes involved in mitochondrial biogenesis and cellular metabolic functions in FTC-133 and RO82 W-1 cells by measuring lactate dehydrogenase and cytochrome c oxidase (COX) activities. We studied the action of ionomycin and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA/AM) (i.e. a calcium ionophore and a cytosolic calcium chelator) on whole genome expression and mitochondrial biogenesis in RO82 W-1 cells. COX activity and the dynamics of endoplasmic reticulum and mitochondrial networks were analyzed in regard to calcium-modulating treatments. In the FTC-133 and RO82 W-1 cells, the mitochondrial biogenesis induced by NO was mainly related to PRC expression as a retrograde mitochondrial signaling. Ionomycin diminished COX activity and negatively regulated PRC-mediated mitochondrial biogenesis in RO82 W-1 cells, whereas BAPTA/AM produced the opposite effects with a reorganization of the mitochondrial network. This is the first demonstration that NO and calcium regulate mitochondrial biogenesis through the PRC pathway in thyroid cell lines.
Collapse
Affiliation(s)
| | - Delphine Mirebeau-Prunier
- From INSERM UMR694
- Université d'Angers, and
- Laboratoire de Biochimie, Centre Hospitalier Universitaire d'Angers, F-49033 Angers, France
| | | | | | | | | | - Rémi Houlgatte
- INSERM UMR915, l'Institut du Thorax, F-44007 Nantes, France, and
- Université de Nantes, F-44035 Nantes, France
| | - Yves Malthièry
- From INSERM UMR694
- Université d'Angers, and
- Laboratoire de Biochimie, Centre Hospitalier Universitaire d'Angers, F-49033 Angers, France
| | - Frédérique Savagner
- From INSERM UMR694
- Université d'Angers, and
- Laboratoire de Biochimie, Centre Hospitalier Universitaire d'Angers, F-49033 Angers, France
- INSERM UMR915, l'Institut du Thorax, F-44007 Nantes, France, and
| |
Collapse
|
15
|
Protective effects of resveratrol on calcium-induced oxidative stress in rat heart mitochondria. J Bioenerg Biomembr 2011; 43:101-7. [DOI: 10.1007/s10863-011-9349-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Accepted: 12/24/2010] [Indexed: 01/12/2023]
|
16
|
Abstract
The mitochondrion is the most important organelle in determining continued cell survival and cell death. Mitochondrial dysfunction leads to many human maladies, including cardiovascular diseases, neurodegenerative disease, and cancer. These mitochondria-related pathologies range from early infancy to senescence. The central premise of this review is that if mitochondrial abnormalities contribute to the pathological state, alleviating the mitochondrial dysfunction would contribute to attenuating the severity or progression of the disease. Therefore, this review will examine the role of mitochondria in the etiology and progression of several diseases and explore potential therapeutic benefits of targeting mitochondria in mitigating the disease processes. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate and manipulate mitochondrial function and genomics for therapeutic benefit. These approaches to treat mitochondrial dysfunction rationally could lead to selective protection of cells in different tissues and various disease states. However, most of these approaches are in their infancy.
Collapse
|
17
|
Inhibition of oxygen consumption in skeletal muscle-derived mitochondria by pinacidil, diazoxide, and glibenclamide, but not by 5-hydroxydecanoate. J Bioenerg Biomembr 2010; 42:21-7. [PMID: 20066482 DOI: 10.1007/s10863-009-9265-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Accepted: 11/25/2009] [Indexed: 10/20/2022]
Abstract
Cell intermediary metabolism and energy production succeeds by means of mitochondria, whose activity is in relation to transmembrane potential and/or free radical production. Adenosine triphosphate (ATP)-dependent potassium channels (K(ATP)) in several cell types have shown to couple cell metabolism to membrane potential and ATP production. In this study, we explore whether oxygen consumption in isolated skeletal-muscle mitochondria differs in the presence of distinct respiration substrates and whether these changes are affected by K(ATP)-channel inhibitors such as glibenclamide, 5-Hydroxydecanoate (5-HD), and K(ATP) channel activators (pinacidil and diazoxide). Results demonstrate a concentration-dependent diminution of respiration rate by glibenclamide (0.5-20 microM), pinacidil (1-50 microM), and diazoxide (50-200 microM), but no significant differences were found when the selective mitochondrial K(ATP)-channel inhibitor (5-HD, 10-500 microM) was used. These results suggest that these K(ATP)-channel agonists and antagonists exert an effect on mitochondrial respiration and that they could be acting on mito-K(ATP) or other respiratory-chain components.
Collapse
|