1
|
Wang Y, Huang X, Peng F, Han H, Gu Y, Liu X, Feng Z. Association of variants m.T16172C and m.T16519C in whole mtDNA sequences with high altitude pulmonary edema in Han Chinese lowlanders. BMC Pulm Med 2022; 22:72. [PMID: 35216582 PMCID: PMC8881820 DOI: 10.1186/s12890-021-01791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 12/08/2021] [Indexed: 12/05/2022] Open
Abstract
Background High altitude pulmonary edema (HAPE) is a hypoxia-induced non-cardiogenic pulmonary edema that typically occurred in un-acclimatized lowlanders, which inevitably leads to life-threatening consequences. Apart from multiple factors involved, the genetic factors also play an important role in the pathogenesis of HAPE. So far, researchers have put more energy into the nuclear genome and HAPE, and ignored the relationship between the mitochondrion DNA (mtDNA) variants and HAPE susceptibility. Methods We recruited a total of 366 individuals including 181 HAPE patients and 185 non-HAPE populations through two times. The first time, 49 HAPE patients and 58 non-HAPE individuals were performed through whole mtDNA sequences to search the mutations and haplogroups. The second time, 132 HAPE patients and 127 non-HAPE subjects were collected to apply verifying these mutations and haplogroups of mtDNA with the routine PCR method. Results We analyzed and summarized the clinical characteristics and sequence data for the 49 HAPE patients and 58 non-HAPE individuals. We found that a series of routine blood indexes including systolic arterial blood pressure (SBP), heart rate (HR), white blood cell (WBC), and C-reactive protein (CRP) in the HAPE group presented higher and displayed significant differences compared with those in the non-HAPE group. Although the average numbers of variants in different region and group samples were not statistically significant (P > 0.05), the mutation densities of different regions in the internal group showed significant differences. Then we found two mutations (T16172C and T16519C) associated with the HAPE susceptibility, the T16172C mutation increased the risk of HAPE, and the T16519C mutation decreased the HAPE rating. Furthermore, the two mutations were demonstrated with 132 HAPE patients and 127 non-HAPE individuals. Unfortunately, all the haplogroups were not associated with the HAPE haplogroups. Conclusions We provided evidence of differences in mtDNA polymorphism frequencies between HAPE and non-HAPE Han Chinese. Genotypes of mtDNA 16172C and 16519C were correlated with HAPE susceptibility, indicating the role of the mitochondrial genome in the pathogenesis of HAPE. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01791-1.
Collapse
Affiliation(s)
- Yan Wang
- Clinical Biobank Center, Medical Innovation Research Division of Chinese, PLA General Hospital, No. 28 Fu Xin Road, Hai Dian District, Beijing, 100853, China. .,BaYi Children's Hospital, The Seventh Medical Center of PLA General Hospital, No.5 Nan Men Cang, Dong Cheng District, Beijing, 100700, China.
| | - Xuewen Huang
- The Mountain Sickness Prevention Research Center of the General Hospital of Tibet Military Command, Tibet, China
| | - Fujun Peng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong, China
| | - Huiling Han
- BaYi Children's Hospital, The Seventh Medical Center of PLA General Hospital, No.5 Nan Men Cang, Dong Cheng District, Beijing, 100700, China
| | - Yanan Gu
- BaYi Children's Hospital, The Seventh Medical Center of PLA General Hospital, No.5 Nan Men Cang, Dong Cheng District, Beijing, 100700, China
| | - Xin Liu
- BaYi Children's Hospital, The Seventh Medical Center of PLA General Hospital, No.5 Nan Men Cang, Dong Cheng District, Beijing, 100700, China
| | - Zhichun Feng
- BaYi Children's Hospital, The Seventh Medical Center of PLA General Hospital, No.5 Nan Men Cang, Dong Cheng District, Beijing, 100700, China.
| |
Collapse
|
2
|
Linton RE, Daker M, Khoo ASB, Choo DCY, Viljoen M, Neilsen PM. Nasopharyngeal carcinoma among the Bidayuh of Sarawak, Malaysia: History and risk factors. Oncol Lett 2021; 22:514. [PMID: 33986874 PMCID: PMC8114476 DOI: 10.3892/ol.2021.12775] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 05/05/2021] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a cancer of the epithelial cells lining the nasopharynx. The incidence of NPC has a distinct geographical distribution, mainly affecting the Chinese population of Southern China. In Malaysia, this cancer is exceptionally prevalent among males. There is a high incidence rate of NPC among the Bidayuh natives in Sarawak, Malaysia. Other than epidemiology reports, there has not been an article describing plausible cancer risk factors contributing to NPC within this native group. Researchers are still trying to understand the reasons the Bidayuh and Southern Chinese are highly susceptible to NPC. This article discusses the risk factors of developing NPC: Epstein-Barr virus infection, genetic predisposition, diet, environmental exposure and tobacco smoking. There is a need to improve the understanding of the role of risk factors to identify new ways to prevent cancer, especially among high-risk groups.
Collapse
Affiliation(s)
- Reagan Entigu Linton
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak 93350, Malaysia
| | - Maelinda Daker
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak 93350, Malaysia
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor 40170, Malaysia
| | - Alan Soo-Beng Khoo
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak 93350, Malaysia
- Molecular Pathology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Shah Alam, Selangor 40170, Malaysia
| | - Diana Chung Yiing Choo
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak 93350, Malaysia
| | - Mignon Viljoen
- College of Clinical Sciences, School of Health, Medical and Applied Science, Central Queensland University, North Rockhampton, Queensland 4702, Australia
| | - Paul M. Neilsen
- School of Chemical Engineering and Science, Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak 93350, Malaysia
- College of Clinical Sciences, School of Health, Medical and Applied Science, Central Queensland University, North Rockhampton, Queensland 4702, Australia
| |
Collapse
|
3
|
Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021; 6:15. [PMID: 33436584 PMCID: PMC7801793 DOI: 10.1038/s41392-020-00376-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus-associated diseases are important global health concerns. As a group I carcinogen, EBV accounts for 1.5% of human malignances, including both epithelial- and lymphatic-originated tumors. Moreover, EBV plays an etiological and pathogenic role in a number of non-neoplastic diseases, and is even involved in multiple autoimmune diseases (SADs). In this review, we summarize and discuss some recent exciting discoveries in EBV research area, which including DNA methylation alterations, metabolic reprogramming, the changes of mitochondria and ubiquitin-proteasome system (UPS), oxidative stress and EBV lytic reactivation, variations in non-coding RNA (ncRNA), radiochemotherapy and immunotherapy. Understanding and learning from this advancement will further confirm the far-reaching and future value of therapeutic strategies in EBV-associated diseases.
Collapse
Affiliation(s)
- Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China. .,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China. .,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China. .,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China. .,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China. .,Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
4
|
Thakur N, Sharma AK, Singh H, Singh S. Role of Mitochondrial DNA (mtDNA) Variations in Cancer Development: A Systematic Review. Cancer Invest 2020; 38:375-393. [PMID: 32673136 DOI: 10.1080/07357907.2020.1797768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
mtDNA is the closed circular, ds-DNA present in mitochondria of eukaryotic cells and are inherited maternally. Besides being the power house of the cell, mitochondria are also responsible for the regulation of redox homeostasis, signaling, metabolism, immunity, survival and apoptosis. Lack of a 'Systematic Review' on mtDNA variations and cancers encouraged us to perform the present study. Pubmed', 'Embase' and 'Cochrane Library' databases were searched using keywords 'Mitochondrial DNA' OR 'mtDNA' OR 'mDNA' AND 'polymorphism' AND 'cancer' AND 'risk' to retrieve literature. Polymorphisms occupy first rank among mtDNA variations followed by CNV, MSI, mutations and hold a great potential to emerge as key predictors for human cancers.
Collapse
Affiliation(s)
- Nisha Thakur
- Division of Molecular Diagnostics, Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Ministry of Health & Family Welfare (Govt. of India), Noida, India
| | - Amitesh Kumar Sharma
- Division of Informatics, Systems Research and Management, Indian Council of Medical Research (ICMR), Ministry of Health & Family Welfare (Govt. of India), New Delhi, India
| | - Harpreet Singh
- Division of Informatics, Systems Research and Management, Indian Council of Medical Research (ICMR), Ministry of Health & Family Welfare (Govt. of India), New Delhi, India
| | - Shalini Singh
- Indian Council of Medical Research (ICMR)-National Institute of Cancer Prevention and Research (NICPR), Ministry of Health & Family Welfare (Govt. of India), Noida, India
| |
Collapse
|
5
|
Qu Y, Feng J, Wang L, Wang H, Liu H, Sun X, Li J, Yu H. Association Between Head and Neck Cancers and Polymorphisms 869T/C, 509C/T, and 915G/C of the Transforming Growth Factor-β1 Gene: A Meta-Analysis of Case-Control Studies. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019; 25:8389-8402. [PMID: 31698408 PMCID: PMC6857353 DOI: 10.12659/msm.917506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background Worldwide, head and neck cancers are the eighth most common malignancy. Single nucleotide polymorphisms (SNPs) are associated with susceptibility to cancer and sensitivity to radiotherapy and chemotherapy. The inflammatory cytokine, transforming growth factor-β1 (TGF-β1), is involved in the progression of malignancy. This study aimed to systematically review the literature and undertake a meta-analysis of case-control studies on the association between 869T/C, 509C/T, and 915G/C polymorphisms of the TGF-β1 gene and head and neck cancers. Material/Methods The published literature in the English and Chinese languages were searched to identify relevant studies reporting TGF-β1 gene polymorphisms and head and neck cancer. The PubMed, Embase, Wanfang Data, and CNKI databases were searched. Data were extracted from eligible studies, and meta-analysis was performed using Stata version 12.0 software. Results Ten case-control studies were identified. There was a significant association between the 869T/C polymorphism of the TGF-β1 gene and susceptibility to head and neck cancer. Subgroup analysis showed that the 869T/C polymorphism was not significantly associated with the histological type of head and neck cancer, but was significantly associated with susceptibility to head and neck cancer in the Asian population. The 509C/T polymorphism of the TGF-β1 gene was not significantly associated with susceptibility to nasopharyngeal cancer (NPC), but the 915G/C polymorphism was associated with susceptibility to oral cancer. Conclusions Data from this meta-analysis showed that the 869T/C and 915G/C polymorphisms of the TGF-β1 gene might be associated with susceptibility to head and neck cancer.
Collapse
Affiliation(s)
- Yanli Qu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Jilong Feng
- Department of Radiation Oncology, Fifth Peoples' Hospital of Shenyang, Shenyang, Liaoning, China (mainland)
| | - Lijun Wang
- Department of Radiation Oncology, Fifth Peoples' Hospital of Shenyang, Shenyang, Liaoning, China (mainland)
| | - Huan Wang
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Hangyu Liu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Xiaohu Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Ji Li
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| | - Hong Yu
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
6
|
Meta-analysis of mitochondrial T16189C polymorphism for cancer and Type 2 diabetes risk. Clin Chim Acta 2018; 482:136-143. [PMID: 29627487 DOI: 10.1016/j.cca.2018.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 11/23/2022]
Abstract
AIM Whereas many previous studies have revealed that mitochondrial DNA (mtDNA) polymorphism T16189C is associated with the risk of cancer and Type 2 diabetes mellitus (T2DM), there are others that have disputed the same. As a result, clarity on the role of mitochondrial T16189C in these disorders is missing. The aim of this study is to evaluate the association of T16189C polymorphism with the risk of cancer and T2DM development by pooling all case-control studies available. METHODS Published studies till November 2017 were searched from PubMed, Google scholar, Google and EMBASE and isolated a total of 36 studies having 44,203 subjects (20,439 cases and 23,764 controls) based on strict inclusion and exclusion criteria. We used the statistical software "R" to calculate the Pooled Odds Ratios and 95% confidence intervals to evaluate the association of T16189C polymorphism with a possible risk towards cancer and T2DM development. RESULT From the meta-analysis, we obtained Pooled Odds Ratios using Random effect model for cancer (OR: 1.20, 95% CI: 0.96-1.49, P = 0.104) and for T2DM (OR: 1.22, 95% CI: 1.09-1.36, P = 0.0004). In the subgroup analysis with Random effect model, we found that both Asians and Caucasians were at a statistically significant risk (OR: 1.25, P < 0.0001 and OR: 1.20, P < 0.0001, respectively) for the development of T2DM, whereas, a statistically non-significant risk (OR: 1.28 P = 0.1965 and OR: 1.16, P = 0.1148) emerged for the development of cancer. There was no evidence of a significant publication bias (Egger's and Begg's test) in this meta-analysis. Further sensitivity analysis also demonstrated that our meta-analysis was relatively stable and credible. CONCLUSION Individuals with 'C' allele at position 16,189 within the mitochondrial D-loop are seemingly at a higher risk of developing T2DM and cancer. However, before arriving at generalizations, it would be pertinent to conduct similar studies in different populations with larger numbers to corroborate these results, especially in cancer.
Collapse
|
7
|
Song S, Gong S, Singh P, Lyu J, Bai Y. The interaction between mitochondria and oncoviruses. Biochim Biophys Acta Mol Basis Dis 2018; 1864:481-487. [PMID: 28962899 PMCID: PMC8895674 DOI: 10.1016/j.bbadis.2017.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022]
Abstract
Mitochondria play important roles in multiple aspects of viral tumorigenesis. Mitochondrial genomes contribute to the host's genetic background. After viruses enter the cell, they modulate mitochondrial function and thus alter bioenergetics and retrograde signaling pathways. At the same time, mitochondria also regulate and mediate viral oncogenesis. In this context, oncogenesis by oncoviruses like Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human papilloma virus (HPV), Human Immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) will be discussed.
Collapse
Affiliation(s)
- Shujie Song
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shasha Gong
- School of Medicine, Taizhou College, Taizhou, Zhejiang, China
| | - Pragya Singh
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Corresponding author: Wenzhou Medical University, Chashan, Wenzhou 325035, China. (J. Lyu); (Y. Bai). Fax: 86-577-86689771; Tel: 86-577-86689805
| | - Yidong Bai
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA,Corresponding author: Wenzhou Medical University, Chashan, Wenzhou 325035, China. (J. Lyu); (Y. Bai). Fax: 86-577-86689771; Tel: 86-577-86689805
| |
Collapse
|
8
|
Qiao L, Ru G, Mao Z, Wang C, Nie Z, Li Q, Huang-Yang Y, Zhu L, Liang X, Yu J, Jiang P. Mitochondrial DNA depletion, mitochondrial mutations and high TFAM expression in hepatocellular carcinoma. Oncotarget 2017; 8:84373-84383. [PMID: 29137431 PMCID: PMC5663603 DOI: 10.18632/oncotarget.21033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/17/2017] [Indexed: 12/16/2022] Open
Abstract
We investigated the role of mitochondrial genetic alterations in hepatocellular carcinoma by directly comparing the mitochondrial genomes of 86 matched pairs of HCC and non-tumor liver samples. Substitutions in 637 mtDNA sites were detected, comprising 89.80% transitions and 6.60% transversions. Forty-six somatic variants, including 15 novel mutations, were identified in 40.70% of tumor tissues. Of those, 21 were located in the non-coding region and 25 in the protein-coding region. Twenty-two somatic nonsynonymous changes were identified as putative pathogenic variants, including 4 truncating mutations produced by three frameshifts (MT-ATP6 8628 insC; MT-ND5 13475 T-del, and MT-CYB 14984 insA) and 1 nonsense mutation in MT-CO3 9253 G>A. Among the somatic variants, only m.13676 A>G (MT-ND5), found in only 1 tumor, was heteroplasmic. Both inherited and somatic variants were predominately located in the D-loop region and the MT-ND5 gene. Tumor/non-tumor paired analysis showed that 69% of HCC samples contained significantly reduced mtDNA, compared with 49.0% of non-tumor counterparts. In 81.40% of HCC samples, mitochondrial transcription factor A (TFAM) was enriched in tumor cells but not in adjacent non-tumor cells. Neither mtDNA depletion nor TFAM overexpression correlated with the degree of cell differentiation, though TFAM expression correlated with tumor size.
Collapse
Affiliation(s)
- Lihua Qiao
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guoqing Ru
- Department of Pathology, The Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Zhuochao Mao
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Surgical Oncology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenghui Wang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhipeng Nie
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qiang Li
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiyi Huang-Yang
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ling Zhu
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoyang Liang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jialing Yu
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,School of Public Health, Zhejiang University, Hangzhou, China
| | - Pingping Jiang
- Division of Medical Genetics and Genomics, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Huang XY, Li H, Xu XM, Wang LX. Mitochondrial DNA mutation screening of male patients with obstructive sleep apnea-hypopnea syndrome. Exp Ther Med 2014; 8:519-524. [PMID: 25009612 PMCID: PMC4079429 DOI: 10.3892/etm.2014.1748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 05/01/2014] [Indexed: 12/31/2022] Open
Abstract
The aim of the present study was to analyze the differences between the genes of the mitochondrial DNA (mtDNA) displacement loop (D-loop) region and the Cambridge Reference sequence, in order to screen the mutation sites and investigate the correlation between mutations, clinical parameters and complications associated with obstructive sleep apnea-hypopnea syndrome (OSAHS). mtDNA was obtained from male patients with OSAHS in the Zhejiang Province. In total, 60 male patients with OSAHS and 102 healthy adults were assessed to determine the levels of fasting blood glucose, total cholesterol, triglyceride (TG) and high-density and low-density lipoproteins (LDL). Furthermore, peripheral mtDNA was extracted and bidirectional sequencing was conducted to enable mutation screening. In the mtDNA D-loop region, 178 mutation sites were identified, of which 115 sites were present in the two groups. The number of non-common sites in the OSAHS group was significantly higher compared with the control group (P<0.05). No statistically significant difference was observed in the mutations among the mild, moderate and severe OSAHS groups (P>0.05). A total of 21 cases in the severe OSAHS group exhibited mutation rates of >10%. In the control group, there were 24 cases where the np73A-G and np263A-G mutations were predominant. The np303–np315 region was identified to be the highly variable region and various mutation forms were observed. Statistically significant differences were observed in the neck perimeter, TG and LDL levels among the OSAHS-no-mutation subgroups (P<0.05) and LDL was shown to be associated with an mtDNA mutation in the OSAHS group. Numerous polymorphic mutation sites were identified in the mtDNA D-loop region of the OSAHS group. Therefore, mtDNA mutation sites may be closely associated with the clinical manifestations and complications of OSAHS.
Collapse
Affiliation(s)
- Xiao-Ying Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| | - Hong Li
- Department of Respiratory Disease, Hospital of Huabei Petroleum Administration Bureau, Renqiu, Hebei 062552, P.R. China
| | - Xiao-Mei Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| | - Liang-Xing Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| |
Collapse
|
10
|
Genetic Susceptibility to Head and Neck Squamous Cell Carcinoma. Int J Radiat Oncol Biol Phys 2014; 89:38-48. [DOI: 10.1016/j.ijrobp.2013.09.034] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/16/2013] [Accepted: 09/17/2013] [Indexed: 01/28/2023]
|
11
|
Tommasi S, Favia P, Weigl S, Bianco A, Pilato B, Russo L, Paradiso A, Petruzzella V. Mitochondrial DNA variants and risk of familial breast cancer: an exploratory study. Int J Oncol 2014; 44:1691-8. [PMID: 24603941 DOI: 10.3892/ijo.2014.2324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 01/14/2014] [Indexed: 11/06/2022] Open
Abstract
To assess if mitochondrial DNA (mtDNA) variants are associated with mutations in BRCA susceptibility genes and to investigate the possible role of mitochondrial alterations as susceptibility markers in familial breast cancer (BC), 22 patients with or without BRCA1/BRCA2 mutations, 14 sporadic BC patients and 20 healthy subjects were analyzed. In the D-loop and in the MTND4 region, variants significantly associated with BRCA1 carriers were identified. Moreover, examination of mitochondrial haplogroups revealed X as the most significantly frequent haplogroup in BRCA1 carriers (P=0.005), and H as significantly linked to BRCA2 carriers (P=0.05). Our data suggest the involvement of the mitochondrial genome in the pathogenetic and molecular mechanism of familial BC disease.
Collapse
Affiliation(s)
- Stefania Tommasi
- National Cancer Research Centre, Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Paola Favia
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Stefania Weigl
- National Cancer Research Centre, Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Angelica Bianco
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Brunella Pilato
- National Cancer Research Centre, Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Luciana Russo
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| | - Angelo Paradiso
- National Cancer Research Centre, Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Vittoria Petruzzella
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
12
|
Hu SP, Du JP, Li DR, Yao YG. Mitochondrial DNA haplogroup confers genetic susceptibility to nasopharyngeal carcinoma in Chaoshanese from Guangdong, China. PLoS One 2014; 9:e87795. [PMID: 24498198 PMCID: PMC3909237 DOI: 10.1371/journal.pone.0087795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/02/2014] [Indexed: 02/05/2023] Open
Abstract
Recent studies have shown association of mtDNA background with cancer development. We analyzed mitochondrial DNA (mtDNA) control region variation of 201 patients with nasopharyngeal carcinoma (NPC) and of 201 normal controls from Chaoshan Han Chinese to discern mtDNA haplogroup effect on the disease onset. Binary logistic regression analysis with adjustment for gender and age revealed that the haplogroup R9 (P = 0.011, OR = 1.91, 95% CI = 1.16-3.16), particularly its sub-haplogroup F1 (P = 0.015, OR = 2.43, 95% CI = 1.18-5.00), were associated significantly with increased NPC risk. These haplogroups were further confirmed to confer high NPC risk in males and/or individuals ≥ 40 years of age, but not in females or in subjects <40 years old. Our results indicated that mtDNA background confers genetic susceptibility to NPC in Chaoshan Han Chinese, and R9, particularly its sub-haplogroup F1, is a risk factor for NPC.
Collapse
Affiliation(s)
- Sheng-Ping Hu
- Molecular Biology and Forensic Genetics Laboratory, Shantou University Medical College, Shantou, Guangdong, China
- * E-mail:
| | - Ju-Ping Du
- Molecular Biology and Forensic Genetics Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - De-Rui Li
- Tumor Hospital, Shantou University Medical College, Shantou, Guangdon, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan, China
| |
Collapse
|
13
|
Dai JG, Zhang ZY, Liu QX, Min JX. Mitochondrial genome microsatellite instability and copy number alteration in lung carcinomas. Asian Pac J Cancer Prev 2013; 14:2393-9. [PMID: 23725147 DOI: 10.7314/apjcp.2013.14.4.2393] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Mitochondrial DNA (mtDNA) is considered a hotspot of mutations in various tumors. However, the relationship between microsatellite instability (MSI) and mtDNA copy number alterations in lung cancer has yet to be fully clarifieds. In the current study, we investigated the copy number and MSI of mitochondrial genome in lung carcinomas, as well as their significance for cancer development. METHODS The copy number and MSI of mtDNA in 37 matched lung carcinoma/adjacent histological normal lung tissue samples were examined by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) assays for sequence variation, followed by sequence analysis and fluorogenic 5'-nuclease real-time PCR. Student's t test and linear regression analyses were employed to analyze the association between mtDNA copy number alterations and mitochondrial MSI (mtMSI). RESULTS The mean copy number of mtDNA in lung carcinoma tissue samples was significantly lower than that of the adjacent histologically normal lung tissue samples (p < 0.001). mtMSI was detected in 32.4% (12/37) of lung carcinoma samples. The average copy number of mtDNA in lung carcinoma samples containing mtMSI was significantly lower than that in the other lung carcinoma samples (P < 0.05). CONCLUSIONS Results suggest that mtMSI may be an early and important event in the progression of lung carcinogenesis, particularly in association with variation in mtDNA copy number.
Collapse
Affiliation(s)
- Ji-Gang Dai
- Department of Thoracic Cardiovascular Surgery of Xinqiao Hospital, the Third Military Medical University, Chongqing, China
| | | | | | | |
Collapse
|
14
|
Oliveira PH, Boura JS, Abecasis MM, Gimble JM, da Silva CL, Cabral JMS. Impact of hypoxia and long-term cultivation on the genomic stability and mitochondrial performance of ex vivo expanded human stem/stromal cells. Stem Cell Res 2012; 9:225-36. [PMID: 22903042 DOI: 10.1016/j.scr.2012.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/10/2012] [Accepted: 07/13/2012] [Indexed: 12/17/2022] Open
Abstract
Recent studies have described the occurrence of chromosomal abnormalities and mitochondrial dysfunction in human stem/stromal cells (SCs), particularly after extensive passaging in vitro and/or expansion under low oxygen tensions. To deepen this knowledge we investigated the influence of hypoxia (2% O(2)) and prolonged passaging (>P10) of human bone marrow stromal cells (BMSCs) and adipose-derived stromal cells (ASCs) on the expression of genes involved in DNA repair and cell-cycle regulation pathways, as well as on the occurrence of microsatellite instability and changes in telomere length. Our results show that hypoxic conditions induce an immediate and concerted down-regulation of genes involved in DNA repair and damage response pathways (MLH1, RAD51, BRCA1, and Ku80), concomitantly with the occurrence of microsatellite instability while maintaining telomere length. We further searched for mutations occurring in the mitochondrial genome, and monitored changes in intracellular ATP content, membrane potential and mitochondrial DNA content. Hypoxia led to a simultaneous decrease in ATP content and in the number of mitochondrial genomes, whereas the opposite effect was observed after prolonged passaging. Moreover, we show that neither hypoxia nor prolonged passaging significantly affected the integrity of the mitochondrial genome. Ultimately, we present evidence on how hypoxia selectively impacts the cellular response of BMSCs and ASCs, thus pointing for the need to optimize oxygen tension according to the cell source.
Collapse
Affiliation(s)
- Pedro H Oliveira
- Department of Bioengineering and Institute for Biotechnology and Bioengineering, Instituto Superior Técnico (IST), Technical University of Lisbon, Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
15
|
Sequeira A, Martin MV, Rollins B, Moon EA, Bunney WE, Macciardi F, Lupoli S, Smith EN, Kelsoe J, Magnan CN, van Oven M, Baldi P, Wallace DC, Vawter MP. Mitochondrial mutations and polymorphisms in psychiatric disorders. Front Genet 2012; 3:103. [PMID: 22723804 PMCID: PMC3379031 DOI: 10.3389/fgene.2012.00103] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/20/2012] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial deficiencies with unknown causes have been observed in schizophrenia (SZ) and bipolar disorder (BD) in imaging and postmortem studies. Polymorphisms and somatic mutations in mitochondrial DNA (mtDNA) were investigated as potential causes with next generation sequencing of mtDNA (mtDNA-Seq) and genotyping arrays in subjects with SZ, BD, major depressive disorder (MDD), and controls. The common deletion of 4,977 bp in mtDNA was compared between SZ and controls in 11 different vulnerable brain regions and in blood samples, and in dorsolateral prefrontal cortex (DLPFC) of BD, SZ, and controls. In a separate analysis, association of mitochondria SNPs (mtSNPs) with SZ and BD in European ancestry individuals (n = 6,040) was tested using Genetic Association Information Network (GAIN) and Wellcome Trust Case Control Consortium 2 (WTCCC2) datasets. The common deletion levels were highly variable across brain regions, with a 40-fold increase in some regions (nucleus accumbens, caudate nucleus and amygdala), increased with age, and showed little change in blood samples from the same subjects. The common deletion levels were increased in the DLPFC for BD compared to controls, but not in SZ. Full mtDNA genome resequencing of 23 subjects, showed seven novel homoplasmic mutations, five were novel synonymous coding mutations. By logistic regression analysis there were no significant mtSNPs associated with BD or SZ after genome wide correction. However, nominal association of mtSNPs (p < 0.05) to SZ and BD were found in the hypervariable region of mtDNA to T195C and T16519C. The results confirm prior reports that certain brain regions accumulate somatic mutations at higher levels than blood. The study in mtDNA of common polymorphisms, somatic mutations, and rare mutations in larger populations may lead to a better understanding of the pathophysiology of psychiatric disorders.
Collapse
Affiliation(s)
- Adolfo Sequeira
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
| | - Maureen V. Martin
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
| | - Brandi Rollins
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
| | - Emily A. Moon
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
| | - William E. Bunney
- Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
- Department of Medicine, Surgery and Dentistry, University of MilanMilan, Italy
| | - Sara Lupoli
- Department of Medicine, Surgery and Dentistry, University of MilanMilan, Italy
| | - Erin N. Smith
- Department of Pediatrics, School of Medicine, Rady’s Children’s Hospital, University of CaliforniaSan Diego, CA, USA
| | - John Kelsoe
- Psychiatry Service, Veterans Affairs San Diego Healthcare SystemSan Diego, CA, USA
- Department of Psychiatry, University of CaliforniaSan Diego, CA, USA
| | - Christophe N. Magnan
- School of Information and Computer Sciences, Institute for Genomics and Bioinformatics, University of California IrvineIrvine, CA, USA
| | - Mannis van Oven
- Department of Forensic Molecular Biology, Erasmus MC University Medical CenterRotterdam, Netherlands
| | - Pierre Baldi
- School of Information and Computer Sciences, Institute for Genomics and Bioinformatics, University of California IrvineIrvine, CA, USA
| | - Douglas C. Wallace
- Department of Pathology and Laboratory Medicine, University of PennsylvaniaPhiladelphia, PA, USA
| | - Marquis P. Vawter
- Functional Genomics Laboratory, Department of Psychiatry and Human Behavior, University of CaliforniaIrvine, CA, USA
| |
Collapse
|
16
|
Bei JX, Jia WH, Zeng YX. Familial and large-scale case-control studies identify genes associated with nasopharyngeal carcinoma. Semin Cancer Biol 2012; 22:96-106. [PMID: 22313875 DOI: 10.1016/j.semcancer.2012.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/21/2012] [Accepted: 01/24/2012] [Indexed: 12/17/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is an epithelial malignancy and has a remarkable geographic distribution, which is highly prevalent in southern China, Southeast Asia, and North Africa. Although most of the NPC are sporadic cases, the familial clustering of NPC has been demonstrated worldwide. Accumulating studies have proposed that the etiology of NPC is multi-stage and multi-factorial, involving genetic lesions, Epstein-Barr virus infection, and environmental exposure. Genetic variations result in differences in gene function, which in turn lead to different susceptibility to disease. Many studies have been carried out to dissect the genetic variants that contribute to NPC susceptibility. This article reviews the current progress of genetic studies to identify genes associated with NPC, focusing on the familial linkage and large-scale case-control study designs.
Collapse
Affiliation(s)
- Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | | | | |
Collapse
|
17
|
Abstract
Mitochondria are ubiquitous organelles in eukaryotic cells principally responsible for regulating cellular energy metabolism, free radical production, and the execution of apoptotic pathways. Abnormal oxidative phosphorylation (OXPHOS) and aerobic metabolism as a result of mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. In the past decades, numerous somatic mutations in both the coding and control regions of mitochondrial DNA (mtDNA) have been extensively examined in a broad range of primary human cancers, underscoring that accumulation of mtDNA alterations may be a critical factor in eliciting persistent mitochondrial defects and consequently contributing to cancer initiation and progression. However, the roles of these mtDNA mutations in the carcinogenic process remain largely unknown. This review outlines a wide variety of somatic mtDNA mutations identified in common human malignancies and highlights recent advances in understanding the causal roles of mtDNA variations in neoplastic transformation and tumor progression. In addition, it briefly illustrates how mtDNA alterations activate mitochondria-to-nucleus retrograde signaling so as to modulate the expression of relevant nuclear genes or induce epigenetic changes and promote malignant phenotypes in cancer cells. The present state of our knowledge regarding how mutational changes in the mitochondrial genome could be used as a diagnostic biomarker for early detection of cancer and as a potential target in the development of new therapeutic approaches is also discussed. These findings strongly indicate that mtDNA mutations exert a crucial role in the pathogenic mechanisms of tumor development, but continued investigations are definitely required to further elucidate the functional significance of specific mtDNA mutations in the etiology of human cancers.
Collapse
|