1
|
Lake NJ, Ma K, Liu W, Battle SL, Laricchia KM, Tiao G, Puiu D, Ng KK, Cohen J, Compton AG, Cowie S, Christodoulou J, Thorburn DR, Zhao H, Arking DE, Sunyaev SR, Lek M. Quantifying constraint in the human mitochondrial genome. Nature 2024; 635:390-397. [PMID: 39415008 PMCID: PMC11646341 DOI: 10.1038/s41586-024-08048-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Mitochondrial DNA (mtDNA) has an important yet often overlooked role in health and disease. Constraint models quantify the removal of deleterious variation from the population by selection and represent powerful tools for identifying genetic variation that underlies human phenotypes1-4. However, nuclear constraint models are not applicable to mtDNA, owing to its distinct features. Here we describe the development of a mitochondrial genome constraint model and its application to the Genome Aggregation Database (gnomAD), a large-scale population dataset that reports mtDNA variation across 56,434 human participants5. Specifically, we analyse constraint by comparing the observed variation in gnomAD to that expected under neutrality, which was calculated using a mtDNA mutational model and observed maximum heteroplasmy-level data. Our results highlight strong depletion of expected variation, which suggests that many deleterious mtDNA variants remain undetected. To aid their discovery, we compute constraint metrics for every mitochondrial protein, tRNA and rRNA gene, which revealed a range of intolerance to variation. We further characterize the most constrained regions within genes through regional constraint and identify the most constrained sites within the entire mitochondrial genome through local constraint, which showed enrichment of pathogenic variation. Constraint also clustered in three-dimensional structures, which provided insight into functionally important domains and their disease relevance. Notably, we identify constraint at often overlooked sites, including in rRNA and noncoding regions. Last, we demonstrate that these metrics can improve the discovery of deleterious variation that underlies rare and common phenotypes.
Collapse
Affiliation(s)
- Nicole J Lake
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.
| | - Kaiyue Ma
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Stephanie L Battle
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Natural Sciences, Bowie State University, Bowie, MD, USA
| | - Kristen M Laricchia
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Grace Tiao
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Daniela Puiu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kenneth K Ng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Justin Cohen
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Alison G Compton
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Shannon Cowie
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - John Christodoulou
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Clinical Genetics Services, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Hongyu Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Dan E Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shamil R Sunyaev
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Monkol Lek
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Amer W, Toth C, Vassella E, Meinrath J, Koitzsch U, Arens A, Huang J, Eischeid H, Adam A, Buettner R, Scheel A, Schaefer SC, Odenthal M. Evolution analysis of heterogeneous non-small cell lung carcinoma by ultra-deep sequencing of the mitochondrial genome. Sci Rep 2017; 7:11069. [PMID: 28894165 PMCID: PMC5593826 DOI: 10.1038/s41598-017-11345-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/23/2017] [Indexed: 12/20/2022] Open
Abstract
Accurate assessment of tumour heterogeneity is an important issue that influences prognosis and therapeutic decision in molecular pathology. Due to the shortage of protective histones and a limited DNA repair capacity, the mitochondrial (mt)-genome undergoes high variability during tumour development. Therefore, screening of mt-genome represents a useful molecular tool for assessing precise cell lineages and tracking tumour history. Here, we describe a highly specific and robust multiplex PCR-based ultra-deep sequencing technology for analysis of the whole mt-genome (wmt-seq) on low quality-DNA from formalin-fixed paraffin-embedded tissues. As a proof of concept, we applied the wmt-seq technology to characterize the clonal relationship of non-small cell lung cancer (NSCLC) specimens with multiple lesions (N = 43) that show either different histological subtypes (group I) or pulmonary adenosquamous carcinoma as striking examples of a mixed-histology tumour (group II). The application of wmt-seq demonstrated that most samples bear common mt-mutations in each lesion of an individual patient, indicating a single cell progeny and clonal relationship. Hereby we show the monoclonal origin of histologically heterogeneous NSCLC and demonstrate the evolutionary relation of NSCLC cases carrying heteroplasmic mt-variants.
Collapse
Affiliation(s)
- Wafa Amer
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Csaba Toth
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Erik Vassella
- Institute of Pathology, University Hospital of Bern, Bern, Switzerland
| | - Jeannine Meinrath
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Ulrike Koitzsch
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | | | - Jia Huang
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Hannah Eischeid
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Alexander Adam
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Reinhard Buettner
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany.,Center of Integrative Oncology, University Clinic of Cologne and Bonn, Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Cologne, Germany.,Center of Molecular Medicine of Cologne, University of Cologne, Cologne, Germany
| | - Andreas Scheel
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany.,Center of Integrative Oncology, University Clinic of Cologne and Bonn, Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Cologne, Germany
| | - Stephan C Schaefer
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany.,Center of Integrative Oncology, University Clinic of Cologne and Bonn, Cologne, Germany.,Lung Cancer Group Cologne, University Hospital of Cologne, Cologne, Germany
| | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany. .,Center of Integrative Oncology, University Clinic of Cologne and Bonn, Cologne, Germany. .,Center of Molecular Medicine of Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Rodemann HP, Bodis S. Cutting-edge research in basic and translational radiation biology/oncology reflections from the 14th International Wolfsberg Meeting on Molecular Radiation Biology/Oncology 2015. Radiother Oncol 2015; 116:335-41. [DOI: 10.1016/j.radonc.2015.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/04/2015] [Accepted: 09/05/2015] [Indexed: 01/11/2023]
|
4
|
Otten ABC, Smeets HJM. Evolutionary defined role of the mitochondrial DNA in fertility, disease and ageing. Hum Reprod Update 2015; 21:671-89. [PMID: 25976758 DOI: 10.1093/humupd/dmv024] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 04/22/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The endosymbiosis of an alpha-proteobacterium and a eubacterium a billion years ago paved the way for multicellularity and enabled eukaryotes to flourish. The selective advantage for the host was the acquired ability to generate large amounts of intracellular hydrogen-dependent adenosine triphosphate. The price was increased reactive oxygen species (ROS) inside the eukaryotic cell, causing high mutation rates of the mitochondrial DNA (mtDNA). According to the Muller's ratchet theory, this accumulation of mutations in asexually transmitted mtDNA would ultimately lead to reduced reproductive fitness and eventually extinction. However, mitochondria have persisted over the course of evolution, initially due to a rapid, extreme evolutionary reduction of the mtDNA content. After the phylogenetic divergence of eukaryotes into animals, fungi and plants, differences in evolution of the mtDNA occurred with different adaptations for coping with the mutation burden within these clades. As a result, mitochondrial evolutionary mechanisms have had a profound effect on human adaptation, fertility, healthy reproduction, mtDNA disease manifestation and transmission and ageing. An understanding of these mechanisms might elucidate novel approaches for treatment and prevention of mtDNA disease. METHODS The scientific literature was investigated to determine how mtDNA evolved in animals, plants and fungi. Furthermore, the different mechanisms of mtDNA inheritance and of balancing Muller's ratchet in these species were summarized together with the consequences of these mechanisms for human health and reproduction. RESULTS Animal, plant and fungal mtDNA have evolved differently. Animals have compact genomes, little recombination, a stable number of genes and a high mtDNA copy number, whereas plants have larger genomes with variable gene counts, a low mtDNA copy number and many recombination events. Fungal mtDNA is somewhere in between. In plants, the mtDNA mutation rate is kept low by effective ROS defence and efficient recombination-mediated mtDNA repair. In animal mtDNA, these mechanisms are not or less well-developed and the detrimental mutagenesis events are controlled by a high mtDNA copy number in combination with a genetic bottleneck and purifying selection during transmission. The mtDNA mutation rates in animals are higher than in plants, which allow mobile animals to adapt more rapidly to various environmental conditions in terms of energy production, whereas static plants do not have this need. Although at the level of the species, these mechanisms have been extremely successful, they can have adverse effects for the individual, resulting, in humans, in severe or unpredictably segregating mtDNA diseases, as well as fertility problems and unhealthy ageing. CONCLUSIONS Understanding the forces and processes that underlie mtDNA evolution among different species increases our knowledge on the detrimental consequences that individuals can have from these evolutionary end-points. Alternative outcomes in animals, fungi and plants will lead to a better understanding of the inheritance of mtDNA disorders and mtDNA-related fertility problems. These will allow the development of options to ameliorate, cure and/or prevent mtDNA diseases and mtDNA-related fertility problems.
Collapse
Affiliation(s)
- Auke B C Otten
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, PO box 616 (box 16), 6200 MD Maastricht, The Netherlands School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Hubert J M Smeets
- Department of Clinical Genetics, Unit Clinical Genomics, Maastricht University Medical Centre, PO box 616 (box 16), 6200 MD Maastricht, The Netherlands School for Oncology and Developmental Biology (GROW), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
5
|
Fujioka H, Tandler B, Rosca M, McCandless SE, Katirji B, Cohen ML, Rapisuwon S, Hoppel CL. Multiple muscle cell alterations in a case of encephalomyopathy. Ultrastruct Pathol 2013; 38:13-25. [PMID: 24134831 DOI: 10.3109/01913123.2013.831158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Skeletal muscle from an encephalomyopathy was examined by morphological and biochemical modalities. Mitochondria displayed variability in size, numbers per myocyte, and morphology. Certain organelles had stacks of dense cristae, others contained variable numbers of crystalloids or several lipid droplets. In isolated skeletal muscle mitochondria, oxidative phosphorylation was reduced, but activities of the electron transport chain components were unaffected. This is the second case of adult onset encephalomyopathy with a phenotype overlapping MERRF and Kearns-Sayre syndrome associated with a heteroplasmic mtDNA 3255G > A mutation in the tRNA(UUR(LEU)). This study emphasizes the desirability of a multidisciplinary approach in the diagnosis of complex myopathies.
Collapse
Affiliation(s)
- Hisashi Fujioka
- Electron Microscopy Facility and Center for Mitochondrial Disease, School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Smeets HJM. Preventing the transmission of mitochondrial DNA disorders: selecting the good guys or kicking out the bad guys. Reprod Biomed Online 2013; 27:599-610. [PMID: 24135157 DOI: 10.1016/j.rbmo.2013.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 01/30/2023]
Abstract
Mitochondrial disorders represent the most common group of inborn errors of metabolism. Clinical manifestations can be extremely variable, ranging from single affected tissues to multisystemic syndromes. Maternally inherited mitochondrial DNA (mtDNA) mutations are a frequent cause, affecting about one in 5000 individuals. The expression of mtDNA mutations differs from nuclear gene defects. Mutations are either homoplasmic or heteroplasmic, and in the latter case disease becomes manifest when the mutation load exceeds a tissue-specific threshold. Mutation load can vary between tissues and in time, and often an exact correlation between mutation load and clinical manifestations is lacking. Because of the possible clinical severity, the lack of treatment and the high recurrence risk of affected offspring for female carriers, couples request prevention of transmission of mtDNA mutations. Previously, choices have been limited due to a segregational bottleneck, which makes the mtDNA mutation load in embryos highly variable and the consequences largely unpredictable. However, recently it was shown that preimplantation genetic diagnosis offers a fair chance of unaffected offspring to carriers of heteroplasmic mtDNA mutations. Technically and ethically challenging possibilities, such maternal spindle transfer and pronuclear transfer, are emerging and providing carriers additional prospects of giving birth to a healthy child.
Collapse
Affiliation(s)
- Hubert J M Smeets
- Unit Clinical Genomics, Department of Genetics and Cell Biology, School for Growth and Development and for Cardiovascular Research, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Bouhlal Y, Martinez S, Gong H, Dumas K, Shieh JTC. Twin Mitochondrial Sequence Analysis. Mol Genet Genomic Med 2013; 1:174-186. [PMID: 24040623 PMCID: PMC3768015 DOI: 10.1002/mgg3.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
When applying genome-wide sequencing technologies to disease investigation, it is increasingly important to resolve sequence variation in regions of the genome that may have homologous sequences. The human mitochondrial genome challenges interpretation given the potential for heteroplasmy, somatic variation, and homologous nuclear mitochondrial sequences (numts). Identical twins share the same mitochondrial DNA (mtDNA) from early life, but whether the mitochondrial sequence remains similar is unclear. We compared an adult monozygotic twin pair using high-throughput sequencing and evaluated variants with primer extension and mitochondrial preenrichment. Thirty-seven variants were shared between the twin individuals, and the variants were verified on the original genomic DNA. These studies support highly identical genetic sequence in this case. Certain low-level variant calls were of high quality and homology to the mtDNA, and they were further evaluated. When we assessed calls in preenriched mtDNA templates, we found that these may represent numts, which can be differentiated from mtDNA variation. We conclude that twin identity extends to mtDNA, and it is critical to differentiate between numts and mtDNA in genome sequencing, particularly as significant heteroplasmy could influence genome interpretation. Further studies on mtDNA and numts will aid in understanding how variation occurs and persists.
Collapse
Affiliation(s)
- Yosr Bouhlal
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|