1
|
Nardi F, Funari R, Carapelli A, Badano D, Frati F, Cucini C. The complete mitochondrial genome of the shining leaf chafer Mimela junii (Duftschmidt, 1805) (Coleoptera: Scarabaeidae). Mitochondrial DNA B Resour 2024; 9:1439-1444. [PMID: 39450202 PMCID: PMC11500510 DOI: 10.1080/23802359.2024.2417936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The complete mitochondrial genome of the shining leaf chafer Mimela junii was sequenced and is herein described. The mitogenome consists of a circular molecule of 16,805 bp, with an overall AT content of 75.7%. It encodes for 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and contains a non-coding Control Region (CR) characterized by the presence of tandem repeats. The gene order corresponds to the ancestral Pancrustacea model and mitogenome characteristics are congruous with those of hexapods. In the phylogenetic analysis, M. junii is nested within a paraphyletic Anomala with high support, and is herein associated with Anomala corpulenta with medium/low support.
Collapse
Affiliation(s)
- Francesco Nardi
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Rebecca Funari
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Antonio Carapelli
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Davide Badano
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Francesco Frati
- Department of Life Sciences, University of Siena, Siena, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Claudio Cucini
- Department of Life Sciences, University of Siena, Siena, Italy
| |
Collapse
|
2
|
Wang R, Luo Y, Lan Z, Qiu D. Insights into structure, codon usage, repeats, and RNA editing of the complete mitochondrial genome of Perilla frutescens (Lamiaceae). Sci Rep 2024; 14:13940. [PMID: 38886463 PMCID: PMC11637098 DOI: 10.1038/s41598-024-64509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Perilla frutescens (L.) Britton, a member of the Lamiaceae family, stands out as a versatile plant highly valued for its unique aroma and medicinal properties. Additionally, P. frutescens seeds are rich in Îś-linolenic acid, holding substantial economic importance. While the nuclear and chloroplast genomes of P. frutescens have already been documented, the complete mitochondrial genome sequence remains unreported. To this end, the sequencing, annotation, and assembly of the entire Mitochondrial genome of P. frutescens were hereby conducted using a combination of Illumina and PacBio data. The assembled P. frutescens mitochondrial genome spanned 299,551 bp and exhibited a typical circular structure, involving a GC content of 45.23%. Within the genome, a total of 59 unique genes were identified, encompassing 37 protein-coding genes, 20 tRNA genes, and 2 rRNA genes. Additionally, 18 introns were observed in 8 protein-coding genes. Notably, the codons of the P. frutescens mitochondrial genome displayed a notable A/T bias. The analysis also revealed 293 dispersed repeat sequences, 77 simple sequence repeats (SSRs), and 6 tandem repeat sequences. Moreover, RNA editing sites preferentially produced leucine at amino acid editing sites. Furthermore, 70 sequence fragments (12,680 bp) having been transferred from the chloroplast to the mitochondrial genome were identified, accounting for 4.23% of the entire mitochondrial genome. Phylogenetic analysis indicated that among Lamiaceae plants, P. frutescens is most closely related to Salvia miltiorrhiza and Platostoma chinense. Meanwhile, inter-species Ka/Ks results suggested that Ka/Ks < 1 for 28 PCGs, indicating that these genes were evolving under purifying selection. Overall, this study enriches the mitochondrial genome data for P. frutescens and forges a theoretical foundation for future molecular breeding research.
Collapse
Affiliation(s)
- Ru Wang
- Hubei Minzu University, School of Forestry and Horticulture, Enshi, 445000, China
| | - Yongjian Luo
- Hubei Minzu University, School of Forestry and Horticulture, Enshi, 445000, China
| | - Zheng Lan
- Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Daoshou Qiu
- Key Laboratory of Crops Genetics and Improvement of Guangdong Province, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
3
|
The complete mitochondrial genome and novel gene arrangement in Nesodiprion zhejiangensis Zhou & Xiao (Hymenoptera: Diprionidae). Funct Integr Genomics 2023; 23:41. [PMID: 36650401 DOI: 10.1007/s10142-022-00959-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/19/2023]
Abstract
The complete mitochondrial genome (mitogenome) of the sawfly, Nesodiprion zhejiangensis Zhou & Xiao, was sequenced, assembled, and deposited in GenBank (Accession Number: OM501121). The 15,660 bp N. zhejiangensis mitogenome encodes for 2 ribosomal RNAs (rrnL and rrnS), 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), and an AT-rich region of 450 bp in length. The nucleotide composition is biased toward adenine and thymine (A + T = 81.8%). Each PCG is initiated by an ATN codon, except for cox2, which starts with a TTG. Of 13 PCGs, 9 have a TAA termination codon, while the remainder terminate with a TAG or a single T. All tRNAs have the classic cloverleaf structure, except for the dihydrouridine (DHU) arm of tRNAval, which forms a simple loop. There are 49 helices belonging to 6 domains in rrnL and 30 helices belonging to 4 domains in rrnS. In comparison to the ancestral architecture, N. zhejiangensis has the most rearranged mitogenome in Symphyta, in which rearrangement events of local inversion and transposition are identified in three gene clusters. Specifically, the main hotspot of gene rearrangement occurred between rrnS and trnY, and rearranged from rrnS-(AT-rich region)-I-Q-M-nd2-W-C-Y to rrnS-Q-W-C-nd2-I-M-(AT-rich region)-Y, involving a local inversion event of a large gene cluster and transposition events of some tRNAs. Transposition of trnA and trnR (rearranged from A-R to R-A) was observed at the nd3-nd5 gene junction while shuffling of trnP and trnT (rearranged from T-P to P-T) occurred at the nd4l-nd6 gene junction. While illegitimate inter-mtDNA recombination might explain the opposite orientations of transcription between rrnS and trnY, transposition events of tRNA in some gene blocks can be accounted for by the tandem duplication/random loss (TDRL) model. Our phylogenetic analysis suggests that N. zhejiangensis is closely related to congeneric species N. biremis and N. japonicus, which together form a sister lineage with the European pine sawfly, Neodiprion sertifer.
Collapse
|
4
|
Huang Z, Rusitanmu D, Han J. The complete mitochondrial genome and phylogenetic position of Schizothorax argentatus (Cyprinomorpha: Crypriniformes: Cyprinidae). Mitochondrial DNA A DNA Mapp Seq Anal 2023; 34:13-21. [PMID: 38462931 DOI: 10.1080/24701394.2024.2327839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/16/2024] [Indexed: 01/30/2025]
Abstract
We investigated the vulnerable fish species Schizothorax argentatus Kessler, 1874, using low-coverage whole genome sequencing data. The assembled 16,587 bp mitochondrial genome has a nucleotide composition of A = 29.8%, T = 25.3%, G = 17.9%, and C = 27.0%, containing 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes with a gene arrangement identical to other cofamilial species. Phylogenetic analyses of 71 schizothoracine fishes suggest a close relationship between S. argentatus and Schizothorax eurystomus, sharing a common ancestor with Schizothorax pseudoaksaiensis. Our study supports dividing extant schizothoracine fishes into two tribes, Schizothoracini and Schizopygopsini. The estimated time to most recent common ancestor (tMRCA) and their distribution imply geological and climatic events during the Miocene around the Qinghai-Tibet Plateau as significant evolutionary drivers explaining the diversification of main clades in schizothoracine fishes.
Collapse
Affiliation(s)
- Zhengduan Huang
- College of life Science and Technology, Xinjiang University, Urumqi, P.R. China
| | - Dilina Rusitanmu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, P.R. China
| | - Jie Han
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, P.R. China
| |
Collapse
|
5
|
The Mitochondrial Genome of a Freshwater Pelagic Amphipod Macrohectopus branickii Is among the Longest in Metazoa. Genes (Basel) 2021; 12:genes12122030. [PMID: 34946978 PMCID: PMC8700879 DOI: 10.3390/genes12122030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
There are more than 350 species of amphipods (Crustacea) in Lake Baikal, which have emerged predominantly through the course of endemic radiation. This group represents a remarkable model for studying various aspects of evolution, one of which is the evolution of mitochondrial (mt) genome architectures. We sequenced and assembled the mt genome of a pelagic Baikalian amphipod species Macrohectopus branickii. The mt genome is revealed to have an extraordinary length (42,256 bp), deviating significantly from the genomes of other amphipod species and the majority of animals. The mt genome of M. branickii has a unique gene order within amphipods, duplications of the four tRNA genes and Cox2, and a long non-coding region, that makes up about two thirds of the genome’s size. The extension of the mt genome was most likely caused by multiple duplications and inversions of regions harboring ribosomal RNA genes. In this study, we analyzed the patterns of mt genome length changes in amphipods and other animal phyla. Through a statistical analysis, we demonstrated that the variability in the mt genome length may be a characteristic of certain phyla and is primarily conferred by expansions of non-coding regions.
Collapse
|
6
|
Bágeľová Poláková S, Lichtner Ž, Szemes T, Smolejová M, Sulo P. Mitochondrial DNA duplication, recombination, and introgression during interspecific hybridization. Sci Rep 2021; 11:12726. [PMID: 34135414 PMCID: PMC8209160 DOI: 10.1038/s41598-021-92125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/03/2021] [Indexed: 02/05/2023] Open
Abstract
mtDNA recombination events in yeasts are known, but altered mitochondrial genomes were not completed. Therefore, we analyzed recombined mtDNAs in six Saccharomyces cerevisiae × Saccharomyces paradoxus hybrids in detail. Assembled molecules contain mostly segments with variable length introgressed to other mtDNA. All recombination sites are in the vicinity of the mobile elements, introns in cox1, cob genes and free standing ORF1, ORF4. The transplaced regions involve co-converted proximal exon regions. Thus, these selfish elements are beneficial to the host if the mother molecule is challenged with another molecule for transmission to the progeny. They trigger mtDNA recombination ensuring the transfer of adjacent regions, into the progeny of recombinant molecules. The recombination of the large segments may result in mitotically stable duplication of several genes.
Collapse
Affiliation(s)
- Silvia Bágeľová Poláková
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia ,grid.419303.c0000 0001 2180 9405Present Address: Department of Membrane Biochemistry, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, 84005 Slovakia
| | - Žaneta Lichtner
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia
| | - Tomáš Szemes
- grid.7634.60000000109409708Comenius University Science Park, Bratislava, 841 04 Slovakia ,grid.7634.60000000109409708Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, 842 15 Slovakia ,Geneton s.r.o., Galvaniho 7, Bratislava, 821 04 Slovakia
| | - Martina Smolejová
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia
| | - Pavol Sulo
- grid.7634.60000000109409708Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, 842 15 Slovakia
| |
Collapse
|
7
|
Yildiz G, Ozkilinc H. Pan-Mitogenomics Approach Discovers Diversity and Dynamism in the Prominent Brown Rot Fungal Pathogens. Front Microbiol 2021; 12:647989. [PMID: 34054750 PMCID: PMC8149612 DOI: 10.3389/fmicb.2021.647989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/29/2021] [Indexed: 01/26/2023] Open
Abstract
Monilinia fructicola and Monilinia laxa species are the most destructive and economically devastating fungal plant pathogens causing brown rot disease on stone and pome fruits worldwide. Mitochondrial genomes (mitogenomes) play critical roles influencing the mechanisms and directions of the evolution of fungal pathogens. The pan-mitogenomics approach predicts core and accessory regions of the mitochondrial genomes and explains the gain or loss of variation within and between species. The present study is a fungal pan-mitogenome of M. fructicola (N = 8) and M. laxa (N = 8) species. The completely sequenced and annotated mitogenomes showed high variability in size within and between the species. The mitogenomes of M. laxa were larger, ranging from 178,351 to 179,780bp, than the mitogenomes of M. fructicola, ranging from 158,607 to 167,838bp. However, size variation within the species showed that M. fructicola isolates were more variable in the size range than M. laxa isolates. All the mitogenomes included conserved mitochondrial genes, as well as variable regions including different mobile introns encoding homing endonucleases or maturase, non-coding introns, and repetitive elements. The linear model analysis supported the hypothesis that the mitogenome size expansion is due to presence of variable (accessory) regions. Gene synteny was mostly conserved among all samples, with the exception for order of the rps3 in the mitogenome of one isolate. The mitogenomes presented AT richness; however, A/T and G/C skew varied among the mitochondrial genes. The purifying selection was detected in almost all the protein-coding genes (PCGs) between the species. However, cytochrome b was the only gene showing a positive selection signal among the total samples. Combined datasets of amino acid sequences of 14 core mitochondrial PCGs and rps3 obtained from this study together with published mitochondrial genome sequences from some other species from Heliotales were used to infer a maximum likelihood (ML) phylogenetic tree. ML tree indicated that both Monilinia species highly diverged from each other as well as some other fungal species from the same order. Mitogenomes harbor much information about the evolution of fungal plant pathogens, which could be useful to predict pathogenic life strategies.
Collapse
Affiliation(s)
- Gozde Yildiz
- School of Graduate Studies, MSc Program in Biomolecular Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Hilal Ozkilinc
- School of Graduate Studies, MSc Program in Biomolecular Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey.,Faculty of Arts and Sciences, Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
8
|
Comparative mitogenomics of Hymenoptera reveals evolutionary differences in structure and composition. Int J Biol Macromol 2020; 144:460-472. [DOI: 10.1016/j.ijbiomac.2019.12.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/06/2019] [Accepted: 12/15/2019] [Indexed: 01/26/2023]
|
9
|
Leo C, Nardi F, Frati F, Fanciulli PP, Cucini C, Vitale M, Brunetti C, Carapelli A. The mitogenome of the jumping bristletail Trigoniophthalmus alternatus (Insecta, Microcoryphia) and the phylogeny of insect early-divergent lineages. MITOCHONDRIAL DNA PART B-RESOURCES 2019; 4:2855-2856. [PMID: 33365760 PMCID: PMC7706868 DOI: 10.1080/23802359.2019.1660592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The complete mitochondrial genome of the machilid Trigoniophthalmus alternatus (Silvestri 1904) is herein described and applied to phylogenetic analyses, inclusive of the most early-divergent lineages of hexapods. Both gene content and order generally conform with the organization of the arthropods’ mitochondrial genome. One gene translocation involving trnA is the autapomorphic character observed in this species. Another peculiar molecular feature is the long size of the A + T-rich region, due to the occurrence of repeat units. The phylogenetic analyses support the typical placement, along the hexapods’ tree, of Ectognatha, Monocondylia and Dicondylia, with Diplura as the adelphotaxon of all true insects.
Collapse
Affiliation(s)
- Chiara Leo
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Francesco Nardi
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Francesco Frati
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | - Claudio Cucini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Matteo Vitale
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | | |
Collapse
|
10
|
Carapelli A, Bu Y, Chen WJ, Nardi F, Leo C, Frati F, Luan YX. Going Deeper into High and Low Phylogenetic Relationships of Protura. Genes (Basel) 2019; 10:E292. [PMID: 30974866 PMCID: PMC6523364 DOI: 10.3390/genes10040292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/16/2022] Open
Abstract
Proturans are small, wingless, soil-dwelling arthropods, generally associated with the early diversification of Hexapoda. Their bizarre morphology, together with conflicting results of molecular studies, has nevertheless made their classification ambiguous. Furthermore, their limited dispersal capability (due to the primarily absence of wings) and their euedaphic lifestyle have greatly complicated species-level identification. Mitochondrial and nuclear markers have been applied herein to investigate and summarize proturan systematics at different hierarchical levels. Two new mitochondrial genomes are described and included in a phylum-level phylogenetic analysis, but the position of Protura could not be resolved with confidence due to an accelerated rate of substitution and extensive gene rearrangements. Mitochondrial and nuclear loci were also applied in order to revise the intra-class systematics, recovering three proturan orders and most of the families/subfamilies included as monophyletic, with the exception of the subfamily Acerentominae. At the species level, most morphologically described species were confirmed using molecular markers, with some exceptions, and the advantages of including nuclear, as well as mitochondrial, markers and morphology are discussed. At all levels, an enlarged taxon sampling and the integration of data from different sources may be of significant help in solving open questions that still persist on the evolutionary history of Protura.
Collapse
Affiliation(s)
- Antonio Carapelli
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Yun Bu
- Natural History Research Center, Shanghai Natural History Museum, Shanghai Science & Technology Museum, Shanghai 200041, China.
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Wan-Jun Chen
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Francesco Nardi
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Chiara Leo
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Francesco Frati
- Department of Life Sciences, University of Siena, Via A. Moro 2, 53100 Siena, Italy.
| | - Yun-Xia Luan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
11
|
Sayadi A, Immonen E, Tellgren-Roth C, Arnqvist G. The Evolution of Dark Matter in the Mitogenome of Seed Beetles. Genome Biol Evol 2017; 9:2697-2706. [PMID: 29048527 PMCID: PMC5737749 DOI: 10.1093/gbe/evx205] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2017] [Indexed: 12/14/2022] Open
Abstract
Animal mitogenomes are generally thought of as being economic and optimized for rapid replication and transcription. We use long-read sequencing technology to assemble the remarkable mitogenomes of four species of seed beetles. These are the largest circular mitogenomes ever assembled in insects, ranging from 24,496 to 26,613 bp in total length, and are exceptional in that some 40% consists of non-coding DNA. The size expansion is due to two very long intergenic spacers (LIGSs), rich in tandem repeats. The two LIGSs are present in all species but vary greatly in length (114-10,408 bp), show very low sequence similarity, divergent tandem repeat motifs, a very high AT content and concerted length evolution. The LIGSs have been retained for at least some 45 my but must have undergone repeated reductions and expansions, despite strong purifying selection on protein coding mtDNA genes. The LIGSs are located in two intergenic sites where a few recent studies of insects have also reported shorter LIGSs (>200 bp). These sites may represent spaces that tolerate neutral repeat array expansions or, alternatively, the LIGSs may function to allow a more economic translational machinery. Mitochondrial respiration in adult seed beetles is based almost exclusively on fatty acids, which reduces the need for building complex I of the oxidative phosphorylation pathway (NADH dehydrogenase). One possibility is thus that the LIGSs may allow depressed transcription of NAD genes. RNA sequencing showed that LIGSs are partly transcribed and transcriptional profiling suggested that all seven mtDNA NAD genes indeed show low levels of transcription and co-regulation of transcription across sexes and tissues.
Collapse
Affiliation(s)
- Ahmed Sayadi
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Elina Immonen
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Sweden
| | - Christian Tellgren-Roth
- National Genomics Infrastructure, Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Sweden
| |
Collapse
|
12
|
Wang Y, Huang XL, Qiao GX. The complete mitochondrial genome of Cervaphis quercus (Insecta: Hemiptera: Aphididae: Greenideinae). INSECT SCIENCE 2014; 21:278-290. [PMID: 24482299 DOI: 10.1111/1744-7917.12112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/24/2014] [Indexed: 06/03/2023]
Abstract
The mitochondrial genome of Cervaphis quercus has been sequenced and annotated. The entire genome of 15,272 bp encodes two ribosomal RNA genes (rrnL and rrnS), 22 transfer RNA (tRNA) genes, 13 protein-coding genes and a control region. The genome has the same gene order as that found in the inferred ancestral insect. Nucleotide composition is highly A+T biased. All protein-coding genes use standard mitochondrial initiation codons. Secondary structure models of the two ribosomal RNA genes of C. quercus are similar to those proposed for other insects. All tRNAs have the classic clover-leaf structure, except for the dihydrouridine (DHU) arm of trnS (AGN), which forms a simple loop. The presence of structural elements in the control region is also discussed, with an emphasis on the possible regulation of replication and/or transcription. Comparison with mitochondrial genomes of other aphid species shows their gene arrangements are conserved; however, the variety of repeat regions in species from a different aphid subfamily, Aphidinae, suggests that they resulted from independent evolutionary events.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
13
|
Moritz RLV, Bernt M, Middendorf M. Local similarity search to find gene indicators in mitochondrial genomes. BIOLOGY 2014; 3:220-242. [PMID: 24833343 PMCID: PMC4009762 DOI: 10.3390/biology3010220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
Given a set of nucleotide sequences we consider the problem of identifying conserved substrings occurring in homologous genes in a large number of sequences. The problem is solved by identifying certain nodes in a suffix tree containing all substrings occurring in the given nucleotide sequences. Due to the large size of the targeted data set, our approach employs a truncated version of suffix trees. Two methods for this task are introduced: (1) The annotation guided marker detection method uses gene annotations which might contain a moderate number of errors; (2) The probability based marker detection method determines sequences that appear significantly more often than expected. The approach is successfully applied to the mitochondrial nucleotide sequences, and the corresponding annotations that are available in RefSeq for 2989 metazoan species. We demonstrate that the approach finds appropriate substrings.
Collapse
Affiliation(s)
- Ruby L V Moritz
- Department of Computer Science, University of Leipzig, Postfach 100920, Leipzig D-04009, Germany.
| | - Matthias Bernt
- Department of Computer Science, University of Leipzig, Postfach 100920, Leipzig D-04009, Germany.
| | - Martin Middendorf
- Department of Computer Science, University of Leipzig, Postfach 100920, Leipzig D-04009, Germany.
| |
Collapse
|
14
|
Damas J, Samuels DC, Carneiro J, Amorim A, Pereira F. Mitochondrial DNA rearrangements in health and disease--a comprehensive study. Hum Mutat 2013; 35:1-14. [PMID: 24115352 DOI: 10.1002/humu.22452] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 09/19/2013] [Indexed: 12/12/2022]
Abstract
Mitochondrial DNA (mtDNA) rearrangements cause a wide variety of highly debilitating and often fatal disorders and have been implicated in aging and age-associated disease. Here, we present a meta-analytical study of mtDNA deletions (n = 730) and partial duplications (n = 37) using information from more than 300 studies published over the last 30 years. We show that both classes of mtDNA rearrangements are unequally distributed among disorders and their breakpoints have different genomic locations. We also demonstrate that 100% of cases with sporadic mtDNA deletions and 97.3% with duplications have no breakpoints in the 16,071 breakage hotspot site, in contrast with deletions from healthy and aged tissues. Notably, most deletions removing a section of the D-loop are found in tumors. Deleted mtDNA molecules lacking the origin of L-strand replication (O(L)) represent only 9.5% of all reported cases, whereas extra origins of replication occur in all duplications. As previously shown for deletions, imperfect stretches of homology are common in duplication breakpoints. Finally, we provide a dedicated Website with detailed information on deleted/duplicated mtDNA regions to facilitate the design of efficient methods for identification and screening of rearranged mitochondrial genomes (available at http://www.portugene.com/mtDNArearrangements.html).
Collapse
Affiliation(s)
- Joana Damas
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Rua Dr. Roberto Frias s/n, Porto, Portugal
| | | | | | | | | |
Collapse
|
15
|
The complete mitochondrial genome of the Antarctic sea spider Ammothea carolinensis (Chelicerata; Pycnogonida). Polar Biol 2013. [DOI: 10.1007/s00300-013-1288-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|