1
|
Barnoud T, Leung JC, Leu JIJ, Basu S, Poli ANR, Parris JLD, Indeglia A, Martynyuk T, Good M, Gnanapradeepan K, Sanseviero E, Moeller R, Tang HY, Cassel J, Kossenkov AV, Liu Q, Speicher DW, Gabrilovich DI, Salvino JM, George DL, Murphy ME. A Novel Inhibitor of HSP70 Induces Mitochondrial Toxicity and Immune Cell Recruitment in Tumors. Cancer Res 2020; 80:5270-5281. [PMID: 33023943 DOI: 10.1158/0008-5472.can-20-0397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/24/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022]
Abstract
The protein chaperone HSP70 is overexpressed in many cancers including colorectal cancer, where overexpression is associated with poor survival. We report here the creation of a uniquely acting HSP70 inhibitor (HSP70i) that targets multiple compartments in the cancer cell, including mitochondria. This inhibitor was mitochondria toxic and cytotoxic to colorectal cancer cells, but not to normal colon epithelial cells. Inhibition of HSP70 was efficacious as a single agent in primary and metastatic models of colorectal cancer and enabled identification of novel mitochondrial client proteins for HSP70. In a syngeneic colorectal cancer model, the inhibitor increased immune cell recruitment into tumors. Cells treated with the inhibitor secreted danger-associated molecular patterns (DAMP), including ATP and HMGB1, and functioned effectively as a tumor vaccine. Interestingly, the unique properties of this HSP70i in the disruption of mitochondrial function and the inhibition of proteostasis both contributed to DAMP release. This HSP70i constitutes a promising therapeutic opportunity in colorectal cancer and may exhibit antitumor activity against other tumor types. SIGNIFICANCE: These findings describe a novel HSP70i that disrupts mitochondrial proteostasis, demonstrating single-agent efficacy that induces immunogenic cell death in treated tumors.
Collapse
Affiliation(s)
- Thibaut Barnoud
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Jessica C Leung
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Julia I-Ju Leu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Subhasree Basu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Adi Narayana Reddy Poli
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joshua L D Parris
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Alexandra Indeglia
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tetyana Martynyuk
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Madeline Good
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Keerthana Gnanapradeepan
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.,Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Emilio Sanseviero
- Program in Immunology, Metastasis and Microenvironment, The Wistar Institute, Philadelphia, Pennsylvania
| | - Rebecca Moeller
- Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Hsin-Yao Tang
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Joel Cassel
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Andrew V Kossenkov
- Program in Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - David W Speicher
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania
| | - Dmitry I Gabrilovich
- Department of Graduate Group in Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph M Salvino
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.
| | - Donna L George
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Maureen E Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania.
| |
Collapse
|
2
|
Jadhav KS, Dungan CM, Williamson DL. Metformin limits ceramide-induced senescence in C2C12 myoblasts. Mech Ageing Dev 2013; 134:548-59. [PMID: 24269881 DOI: 10.1016/j.mad.2013.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 10/26/2013] [Accepted: 11/11/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED High lipid and ceramide concentrations are hallmarks of obese and/or insulin resistant skeletal muscle, yet little is known about its role on cell cycle and senescence. The purpose of this study was to examine the role of ceramide on muscle senescence, and whether metformin limited this response. METHODS Low passage, proliferating C2C12 myoblasts were treated with a control, 50μM C2-ceramide (8h), and/or 2mM metformin, then examined for insulin sensitivity, cell senescence, cell proliferation, cell cycle, protein expression of cell cycle regulators. RESULTS Ceramide treatment caused a dephosphorylation (p<0.05) of Akt and 4E-BP1, regardless of the presence of insulin. The ceramide treated myoblasts displayed higher β-galactosidase staining (p<0.05), reduced BrDu incorporation and total number of cells (p<0.05), and an increased proportion of cells in G2-phase (p<0.05) versus control cultures. Ceramide treatment also upregulated (p<0.05) p53 and p21 protein expression, that was reversed by either pifithrin-α or shRNA for p53. Metformin limited (p<0.05) ceramide's effects on insulin signaling, senescence, and cell cycle regulation. CONCLUSIONS High ceramide concentrations reduced myoblast proliferation that was associated with aberrant cell cycle regulation and a senescent phenotype, which could provide an understanding of skeletal muscle cell adaptation during conditions of high intramuscular lipid deposition and/or obesity.
Collapse
Affiliation(s)
- Kavita S Jadhav
- Department of Exercise and Nutrition Sciences, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - Cory M Dungan
- Department of Exercise and Nutrition Sciences, University at Buffalo SUNY, Buffalo, NY 14214, USA
| | - David L Williamson
- Department of Exercise and Nutrition Sciences, University at Buffalo SUNY, Buffalo, NY 14214, USA.
| |
Collapse
|