1
|
Li ZZ, Wang Y, He XY, Li WG. The Taihangia mitogenome provides new insights into its adaptation and organelle genome evolution in Rosaceae. PLANTA 2025; 261:59. [PMID: 39939538 DOI: 10.1007/s00425-025-04629-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/19/2025] [Indexed: 02/14/2025]
Abstract
MAIN CONCLUSION We present the first Taihangia mitogenome, uncovering frequent rearrangements and significant length variation in Rosaceae, likely driven by hybridization and repeat content, alongside widespread mito-chloroplast phylogenetic conflicts. Taihangia, an ancient and endangered monotypic genus within the subfamily Rosoideae of the family Rosaceae, is endemic to cliffs and serves as an ideal material for studying the adaptations of cliff-dwelling plants and the evolutionary processes of the Rosaceae family. In this study, the mitogenome and plastome of T. rupestris var. ciliata were assembled, with lengths of 265,633 bp and 155,467 bp, both exhibiting typical circular structures. Positive selection was detected in the nad4L and sdh4 genes, likely playing a role in adaptation to harsh environments. Comparative genomic analysis indicated that repetitive sequences are likely the main contributors to genome size variation in Rosaceae and also influence horizontal gene transfer between organelle genomes. In T. rupestris var. ciliata, 20 mitochondrial plastid DNA sequences were identified, including 16 complete plastid genes. Moreover, frequent rearrangements were observed in the non-coding regions of mitogenome within the subfamily Rosoideae, potentially linked to the complex evolutionary history and the presence of repetitive sequences. In contrast, coding regions remained highly conserved (over 83% similarity) to maintain essential mitochondrial functions. Phylogenomic analysis of the two organelle genomes revealed conflicts in the phylogenetic relationships within Rosaceae, potentially due to the inconsistent mutation rates and frequent hybridization events in the evolutionary history of the family. In conclusion, the organelle genome analysis of Taihangia provides crucial genomic resources for understanding the evolution and adaptation of Rosaceae species.
Collapse
Affiliation(s)
- Zhi-Zhong Li
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in WanjiangBasin Co-Funded By Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China.
| | - Ying Wang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in WanjiangBasin Co-Funded By Anhui Province and Ministry of Education of the People's Republic of China, School of Ecology and Environment, Anhui Normal University, Wuhu, 241002, China
| | - Xiang-Yan He
- Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Guo Li
- School of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, China.
| |
Collapse
|
2
|
Chen Z, Zhuo W, Wang Y, Qi J, Liu L, Lu S, Wang H, Sun T, Wang L, Ren F. Mitochondrial genome of Lonicera macranthoides: features, RNA editing, and insights into male sterility. FRONTIERS IN PLANT SCIENCE 2025; 15:1520251. [PMID: 39866323 PMCID: PMC11759266 DOI: 10.3389/fpls.2024.1520251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/20/2024] [Indexed: 01/28/2025]
Abstract
Introduction Mitochondria are essential organelles that provide energy for plants. They are semi-autonomous, maternally inherited, and closely linked to cytoplasmic male sterility (CMS) in plants. Lonicera macranthoides, a widely used medicinal plant from the Caprifoliaceae family, is rich in chlorogenic acid (CGA) and its analogues, which are known for their antiviral and anticancer properties. However, studies on the mitogenome of L. macranthoides still remain limited. Methods The mitochondrial DNA contained in the whole genome DNA was extracted from a male sterile cultivar of L. macranthoides, named 'Yulei 1'. Next-generation sequencing (NGS) and third-generation sequencing (TGS) technologies were combined to obtain the mitogenome. RNA editing events were identified by integrating the mitogenome data with RNA sequencing data from leaf, stem, and flower tissues. The potential causes of male sterility in 'Yulei 1' were analyzed based on the loss of functional genes, mitogenome rearrangements, RNA editing events, and open reading frames (ORFs). Results and discussion The complete mitogenome of L. macranthoides 'Yulei 1' was obtained for the first time, with a length of 1,002,202 bp. It contains 48 protein-coding genes (PCGs), 26 tRNA genes, and 3 rRNA genes. Additionally, 79 simple sequence repeats (SSRs), 39 tandem repeats, and 99 dispersed repeats were identified. Among these, two direct repeats (RP1a/1b, RP2a/2b) and two inverse repeats (RP3a/b, RP4a/b) may facilitate mitogenome recombination. Gene transfer analysis revealed that 4.36% and 21.98% of mitogenomic sequences mapped to the chloroplast and nuclear genomes, respectively. Phylogenetic analysis indicated that L. macranthoides is closest to L. japonica at the mitogenome level. Notably, RNA editing events varied across different plant tissues, with 357 editing sites in 30 PCGs in leaves, 138 sites in 24 PCGs in flowers, and 68 sites in 13 PCGs in stems. Finally, all indications of CMS in the mitogenome were screened, including the detection of ORFs, and the findings showed no mutations in the mitogenome that would explain the sterility of 'Yulei 1'. Overall, our study provides a complete mitogenome of L. macranthoides, which will aid in its genetic marker exploration, evolutionary relationship analysis, and breeding programs.
Collapse
Affiliation(s)
- Zhong Chen
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Wei Zhuo
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Yuqi Wang
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Junpeng Qi
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Li Liu
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Sheng’E. Lu
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Han Wang
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
| | - Tao Sun
- Chongqing Customs Technology Center, Shapingba, Chongqing, China
| | - Liqiang Wang
- College of Pharmacy, Heze University, Heze, Shandong, China
| | - Fengming Ren
- Bio-resource Research and Utilization Joint Key Laboratory of Sichuan and Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Nanchuan, Chongqing, China
- School of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Bishan, Chongqing, China
| |
Collapse
|
3
|
Wang X, Liang X, Wang R, Gao Y, Li Y, Shi H, Gong W, Saleem S, Zou Q, Tao L, Kang Z, Yang J, Yu Q, Wu Q, Liu H, Fu S. A breeding method for Ogura CMS restorer line independent of restorer source in Brassica napus. Front Genet 2025; 15:1521277. [PMID: 39834543 PMCID: PMC11743515 DOI: 10.3389/fgene.2024.1521277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025] Open
Abstract
The Ogura cytoplasmic male sterility (CMS) line of Brassica napus has gained significant attention for its use in harnessing heterosis. It remains unaffected by temperature and environment and is thorough and stable. The Ogura cytoplasmic restorer line of Brassica napus is derived from the distant hybridization of Raphanus sativus L. and B. napus, but it carried a large number of radish fragments into Brassica napus, because there is no homologous allele of the restorer gene in B. napus, transferring it becomes challenging. In this study, the double haploid induction line in B. napus was used as the male parent for hybridization with the Ogura CMS of B. napus. Surprisingly, fertile plants appeared in the offspring. Further analysis revealed that the cytoplasmic type, ploidy, and chromosome number of the fertile offspring were consistent with the sterile female parent. Moreover, the mitochondrial genome similarity between the fertile offspring and the sterile female parent was 97.7% indicates that the cytoplasm of the two is the same, while the nuclear gene difference between fertile offspring and sterile female parent was only 10.33%, indicates that new genes appeared in the offspring. To further investigate and locate the restorer gene, the BSA method was employed to construct extreme mixed pools. As a result, the restorer gene was mapped to three positions: A09 chromosome 10.99-17.20 Mb, C03 chromosome 5.07-5.34 Mb, and C09 chromosome 18.78-36.60 Mb. The experimental results have proved that induction does produce restorer genes. The induction of the Ogura CMS restorer gene through DH induction line provides a promising new approach for harnessing heterosis in B. napus.
Collapse
Affiliation(s)
- Xuesong Wang
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Xingyu Liang
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Rui Wang
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yuan Gao
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Yun Li
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Haoran Shi
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Wanzhuo Gong
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Saira Saleem
- Oilseeds Research Station, Khanpur, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Qiong Zou
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Lanrong Tao
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Zeming Kang
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Jin Yang
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Qin Yu
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Qiaobo Wu
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| | - Hailan Liu
- Maize Research Institute of Sichuan Agricultural University, Chengdu, China
| | - Shaohong Fu
- National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China
| |
Collapse
|
4
|
Theeuwen TPJM, Wijfjes RY, Dorussen D, Lawson AW, Lind J, Jin K, Boekeloo J, Tijink D, Hall D, Hanhart C, Becker FFM, van Eeuwijk FA, Kramer DM, Wijnker E, Harbinson J, Koornneef M, Aarts MGM. Species-wide inventory of Arabidopsis thaliana organellar variation reveals ample phenotypic variation for photosynthetic performance. Proc Natl Acad Sci U S A 2024; 121:e2414024121. [PMID: 39602263 PMCID: PMC11626173 DOI: 10.1073/pnas.2414024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Efforts to improve photosynthetic performance are increasingly employing natural genetic variation. However, genetic variation in the organellar genomes (plasmotypes) is often disregarded due to the difficulty of studying the plasmotypes and the lack of evidence that this is a worthwhile investment. Here, we systematically phenotyped plasmotype diversity using Arabidopsis thaliana as a model species. A reanalysis of whole-genome resequencing data of 1,541 representative accessions shows that the genetic diversity among the mitochondrial genomes is eight times lower than among the chloroplast genomes. Plasmotype diversity of the accessions divides the species into two major phylogenetic clusters, within which highly divergent subclusters are distinguished. We combined plasmotypes from 60 A. thaliana accessions with the nuclear genomes (nucleotypes) of four A. thaliana accessions to create a panel of 232 cytonuclear genotypes (cybrids). The cybrid plants were grown in a range of different light and temperature conditions and phenotyped using high-throughput phenotyping platforms. Analysis of the phenotypes showed that several plasmotypes alone or in interaction with the nucleotypes have significant effects on photosynthesis and that the effects are highly dependent on the environment. Moreover, we introduce Plasmotype Association Studies (PAS) as a method to reveal plasmotypic effects. Within A. thaliana, several organellar variants can influence photosynthetic phenotypes, which emphasizes the valuable role this variation has on improving photosynthetic performance. The increasing feasibility of producing cybrids in various species calls for further research into how these phenotypes may support breeding goals in crop species.
Collapse
Affiliation(s)
- Tom P. J. M. Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Raúl Y. Wijfjes
- Bioinformatics Group, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Delfi Dorussen
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Aaron W. Lawson
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Jorrit Lind
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Kaining Jin
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Janhenk Boekeloo
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Dillian Tijink
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - David Hall
- Michigan State University Department of Energy Plant Research Lab, Michigan State University, East Lansing, MI48824
| | - Corrie Hanhart
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Frank F. M. Becker
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Fred A. van Eeuwijk
- Biometris, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - David M. Kramer
- Michigan State University Department of Energy Plant Research Lab, Michigan State University, East Lansing, MI48824
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University & Research, Wageningen6708 WE, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| |
Collapse
|
5
|
Wang Y, Williams-Carrier R, Meeley R, Fox T, Chamusco K, Nashed M, Hannah LC, Gabay-Laughnan S, Barkan A, Chase C. Mutations in nuclear genes encoding mitochondrial ribosome proteins restore pollen fertility in S male-sterile maize. G3 (BETHESDA, MD.) 2024; 14:jkae201. [PMID: 39163571 DOI: 10.1093/g3journal/jkae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
The interaction of plant mitochondrial and nuclear genetic systems is exemplified by mitochondria-encoded cytoplasmic male sterility (CMS) under the control of nuclear restorer-of-fertility genes. The S type of CMS in maize is characterized by a pollen collapse phenotype and a unique paradigm for fertility restoration in which numerous nuclear restorer-of-fertility lethal mutations rescue pollen function but condition homozygous-lethal seed phenotypes. Two nonallelic restorer mutations recovered from Mutator transposon-active lines were investigated to determine the mechanisms of pollen fertility restoration and seed lethality. Mu Illumina sequencing of transposon-flanking regions identified insertion alleles of nuclear genes encoding mitochondrial ribosomal proteins RPL6 and RPL14 as candidate restorer-of-fertility lethal mutations. Both candidates were associated with lowered abundance of mitochondria-encoded proteins in developing maize pollen, and the rpl14 mutant candidate was confirmed by independent insertion alleles. While the restored pollen functioned despite reduced accumulation of mitochondrial respiratory proteins, normal-cytoplasm plants heterozygous for the mutant alleles showed a significant pollen transmission bias in favor of the nonmutant Rpl6 and Rpl14 alleles. CMS-S fertility restoration affords a unique forward genetic approach to investigate the mitochondrial requirements for, and contributions to, pollen and seed development.
Collapse
Affiliation(s)
- Yan Wang
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Robert Meeley
- Corteva AgriScience (retired), Johnston, IA 50131, USA
| | - Timothy Fox
- Corteva AgriScience (retired), Johnston, IA 50131, USA
| | - Karen Chamusco
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Mina Nashed
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - L Curtis Hannah
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | - Alice Barkan
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Christine Chase
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
6
|
Bhattacharya J, Nitnavare RB, Bhatnagar-Mathur P, Reddy PS. Cytoplasmic male sterility-based hybrids: mechanistic insights. PLANTA 2024; 260:100. [PMID: 39302508 DOI: 10.1007/s00425-024-04532-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION A comprehensive understanding of the nucleocytoplasmic interactions that occur between genes related to the restoration of fertility and cytoplasmic male sterility (CMS) provides insight into the development of hybrids of important crop species. Modern biotechnological techniques allow this to be achieved in an efficient and quick manner. Heterosis is paramount for increasing the yield and quality of a crop. The development of hybrids for achieving heterosis has been well-studied and proven to be robust and efficient. Cytoplasmic male sterility (CMS) has been explored extensively in the production of hybrids. The underlying mechanisms of CMS include the role of cytotoxic proteins, PCD of tapetal cells, and improper RNA editing of restoration factors. On the other hand, the restoration of fertility is caused by the presence of restorer-of-fertility (Rf) genes or restorer genes, which inhibit the effects of sterility-causing genes. The interaction between mitochondria and the nuclear genome is crucial for several regulatory pathways, as observed in the CMS-Rf system and occurs at the genomic, transcriptional, post-transcriptional, translational, and post-translational levels. These CMS-Rf mechanisms have been validated in several crop systems. This review aims to summarize the nucleo-mitochondrial interaction mechanism of the CMS-Rf system. It also sheds light on biotechnological interventions, such as genetic engineering and genome editing, to achieve CMS-based hybrids.
Collapse
Affiliation(s)
- Joorie Bhattacharya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, 500007, India
| | - Rahul B Nitnavare
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington, Leicestershire, Nottingham, LE12 5RD, UK
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
- Plant Breeding & Genetics Laboratory of United Nation, International Atomic Energy Agency, 1400, Vienna, Austria.
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| |
Collapse
|
7
|
Dehaene N, Boussardon C, Andrey P, Charif D, Brandt D, Gilouppe Taillefer C, Nietzel T, Ricou A, Simon M, Tran J, Vezon D, Camilleri C, Arimura SI, Schwarzländer M, Budar F. The mitochondrial orf117Sha gene desynchronizes pollen development and causes pollen abortion in Arabidopsis Sha cytoplasmic male sterility. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4851-4872. [PMID: 38733289 DOI: 10.1093/jxb/erae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/09/2024] [Indexed: 05/13/2024]
Abstract
Cytoplasmic male sterility (CMS) is of major agronomical relevance in hybrid breeding. In gametophytic CMS, abortion of pollen is determined by the grain genotype, while in sporophytic CMS, it is determined by the mother plant genotype. While several CMS mechanisms have been dissected at the molecular level, gametophytic CMS has not been straightforwardly accessible. We used the gametophytic Sha-CMS in Arabidopsis to characterize the cause and process of pollen abortion by implementing in vivo biosensing in single pollen and mitoTALEN mutagenesis. We obtained conclusive evidence that orf117Sha is the CMS-causing gene, despite distinct characteristics from other CMS genes. We measured the in vivo cytosolic ATP content in single pollen, followed pollen development, and analyzed pollen mitochondrial volume in two genotypes that differed only by the presence of the orf117Sha locus. Our results showed that the Sha-CMS is not triggered by ATP deficiency. Instead, we observed desynchronization of a pollen developmental program. Pollen death occurred independently in pollen grains at diverse stages and was preceded by mitochondrial swelling. We conclude that pollen death is grain-autonomous in Sha-CMS and propose that mitochondrial permeability transition, which was previously described as a hallmark of developmental and environmental-triggered cell death programs, precedes pollen death in Sha-CMS.
Collapse
Affiliation(s)
- Noémie Dehaene
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Clément Boussardon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Delphine Charif
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Dennis Brandt
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Clémence Gilouppe Taillefer
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Thomas Nietzel
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Anthony Ricou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Matthieu Simon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Joseph Tran
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Daniel Vezon
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Christine Camilleri
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, Schlossplatz 8, D-48143 Münster, Germany
| | - Françoise Budar
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| |
Collapse
|
8
|
Sloan DB, Conover JL, Grover CE, Wendel JF, Sharbrough J. Polyploid plants take cytonuclear perturbations in stride. THE PLANT CELL 2024; 36:829-839. [PMID: 38267606 PMCID: PMC10980399 DOI: 10.1093/plcell/koae021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/26/2024]
Abstract
Hybridization in plants is often accompanied by nuclear genome doubling (allopolyploidy), which has been hypothesized to perturb interactions between nuclear and organellar (mitochondrial and plastid) genomes by creating imbalances in the relative copy number of these genomes and producing genetic incompatibilities between maternally derived organellar genomes and the half of the allopolyploid nuclear genome from the paternal progenitor. Several evolutionary responses have been predicted to ameliorate these effects, including selection for changes in protein sequences that restore cytonuclear interactions; biased gene retention/expression/conversion favoring maternal nuclear gene copies; and fine-tuning of relative cytonuclear genome copy numbers and expression levels. Numerous recent studies, however, have found that evolutionary responses are inconsistent and rarely scale to genome-wide generalities. The apparent robustness of plant cytonuclear interactions to allopolyploidy may reflect features that are general to allopolyploids such as the lack of F2 hybrid breakdown under disomic inheritance, and others that are more plant-specific, including slow sequence divergence in organellar genomes and preexisting regulatory responses to changes in cell size and endopolyploidy during development. Thus, cytonuclear interactions may only rarely act as the main barrier to establishment of allopolyploid lineages, perhaps helping to explain why allopolyploidy is so pervasive in plant evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Justin L Conover
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Joel Sharbrough
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| |
Collapse
|
9
|
He D, Li Y, Yuan C, Pei X, Damaris RN, Yu H, Qian B, Liu Y, Yi B, Huang C, Zeng J. Characterization of the CMS genetic regulation through comparative complete mitochondrial genome sequencing in Nicotiana tabacum. THE PLANT GENOME 2024; 17:e20409. [PMID: 37961811 DOI: 10.1002/tpg2.20409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 10/01/2023] [Accepted: 10/14/2023] [Indexed: 11/15/2023]
Abstract
Mitochondrial genomes (mitogenomes) of flowering plants vary greatly in structure and size, which can lead to frequent gene mutation, rearrangement, or recombination, then result in the cytoplasmic male sterile (CMS) mutants. In tobacco (Nicotiana tabacum), suaCMS lines are widely used in heterosis breeding; however, the related genetic regulations are not very clear. In this study, the cytological observation indicated that the pollen abortion of tobacco suaCMS(HD) occurred at the very early stage of the stamen primordia differentiation. In this study, the complete mitochondrial genomes of suaCMS(HD) and its maintainer HD were sequenced using the PacBio and Illumina Hiseq technology. The total length of the assembled mitogenomes of suaCMS(HD) and HD was 494,317 bp and 430,694 bp, respectively. Comparative analysis indicated that the expanded 64 K bases in suaCMS(HD) were mainly located in noncoding regions, and 23 and 21 big syntenic blocks (>5000 bp) were found in suaCMS(HD) and HD with a series of repeats. Electron transport chain-related genes were highly conserved in two mitogenomes, except five genes (ATP4, ATP6, COX2, CcmFC, and SDH3) with substantial substitutions. Three suaCMS(HD)-specific genes, orf261, orf291, and orf433, were screened. Sequence analysis and RT-PCR verification showed that they were unique to suaCMS(HD). Further gene location analysis and protein property prediction indicated that all the three genes were likely candidates for suaCMS(HD). This study provides new insight into understanding the suaCMS mechanism and is useful for improving tobacco breeding.
Collapse
Affiliation(s)
- Dongli He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yifan Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Cheng Yuan
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Xiaoxiong Pei
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | | | - Haiqin Yu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Bao Qian
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Yong Liu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Changjun Huang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| | - Jianmin Zeng
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, China
| |
Collapse
|
10
|
Azarin K, Usatov A, Kasianova A, Makarenko M, Gavrilova V. Origin of CMS-PET1 cytotype in cultivated sunflower: A new insight. Gene 2023; 888:147801. [PMID: 37714278 DOI: 10.1016/j.gene.2023.147801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The vast majority of commercial sunflower hybrids worldwide are produced using cytoplasmic male sterility (CMS) of the PET1 type, resulting from the interspecific hybridization of Helianthus petiolaris with Helianthus annuus. Due to the fact that CMS-PET1 was not previously detected in wild sunflower, it was believed that this cytotype could arise during interspecific hybridization and is specific solely for cultivated sunflower. In this study, the open reading frame, orfH522, associated with the CMS-PET1 phenotype, was revealed for the first time in the 3'-flanking region of the mitochondrial atpA gene in wild H. annuus. An analysis of whole genome data from 1089 accessions showed that the frequency of occurrence of CMS-orfH522 in wild H. annuus populations is 3.58%, while in wild H. petiolaris populations, it is 1.26%. In general, the analysis demonstrated that PET1-CMS is a natural cytotype of H. annuus, and the appearance of the CMS phenotype in cultivated sunflowers is associated with the loss of stabilizing nuclear genes of fertility restorers, which occurred during interspecific hybridization. These data can explain the patterns of differential cytoplasmic and nuclear introgression occurring in wild sunflower and are useful for further evolutionary studies.
Collapse
Affiliation(s)
- Kirill Azarin
- Southern Federal University, 344006 Rostov-on-Don, Russia.
| | | | | | - Maksim Makarenko
- Laboratory of Plant Genomics, Institute for Information Transmission Problems, 127051 Moscow, Russia
| | - Vera Gavrilova
- N.I. Vavilov All Russian Institute of Plant Genetic Resources, 190031 Saint Petersburg, Russia
| |
Collapse
|
11
|
Gautam R, Shukla P, Kirti PB. Male sterility in plants: an overview of advancements from natural CMS to genetically manipulated systems for hybrid seed production. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:195. [PMID: 37606708 DOI: 10.1007/s00122-023-04444-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
KEY MESSAGE The male sterility system in plants has traditionally been utilized for hybrid seed production. In last three decades, genetic manipulation for male sterility has revolutionized this area of research related to hybrid seed production technology. Here, we have surveyed some of the natural cytoplasmic male sterility (CMS) systems that existed/ were developed in different crop plants for developing male sterility-fertility restoration systems used in hybrid seed production and highlighted some of the recent biotechnological advancements in the development of genetically engineered systems that occurred in this area. We have indicated the possible future directions toward the development of engineered male sterility systems. Cytoplasmic male sterility (CMS) is an important trait that is naturally prevalent in many plant species, which has been used in the development of hybrid varieties. This is associated with the use of appropriate genes for fertility restoration provided by the restorer line that restores fertility on the corresponding CMS line. The development of hybrids based on a CMS system has been demonstrated in several different crops. However, there are examples of species, which do not have usable cytoplasmic male sterility and fertility restoration systems (Cytoplasmic Genetic Male Sterility Systems-CGMS) for hybrid variety development. In such plants, it is necessary to develop usable male sterile lines through genetic engineering with the use of heterologous expression of suitable genes that control the development of male gametophyte and fertile male gamete formation. They can also be developed through gene editing using the recently developed CRISPR-Cas technology to knock out suitable genes that are responsible for the development of male gametes. The present review aims at providing an insight into the development of various technologies for successful production of hybrid varieties and is intended to provide only essential information on male sterility systems starting from naturally occurring ones to the genetically engineered systems obtained through different means.
Collapse
Affiliation(s)
- Ranjana Gautam
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, 208024, India
| | - Pawan Shukla
- Seri-Biotech Research Laboratory, Central Silk Board, Carmelram Post, Kodathi, Bangalore, 560035, India.
| | - P B Kirti
- Agri Biotech Foundation, PJTS Agricultural University Campus, Rajendranagar, Hyderabad, Telangana, 500030, India
| |
Collapse
|
12
|
Song X, Zhang M, Shahzad K, Zhang X, Guo L, Qi T, Tang H, Wang H, Qiao X, Feng J, Han Y, Xing C, Wu J. Comparative Transcriptome Profiling of CMS-D2 and CMS-D8 Systems Characterizes Fertility Restoration Genes Network in Upland Cotton. Int J Mol Sci 2023; 24:10759. [PMID: 37445936 DOI: 10.3390/ijms241310759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Resolving the genetic basis of fertility restoration for cytoplasmic male sterility (CMS) can improve the efficiency of three-line hybrid breeding. However, the genetic determinants of male fertility restoration in cotton are still largely unknown. This study comprehensively compared the full-length transcripts of CMS-D2 and CMS-D8 systems to identify potential genes linked with fertility restorer genes Rf1 or Rf2. Target comparative analysis revealed a higher percentage of differential genes in each restorer line as compared to their corresponding sterile and maintainer lines. An array of genes with specific expression in the restorer line of CMS-D2 had functional annotations related to floral development and pathway enrichments in various secondary metabolites, while specifically expressed genes in the CMS-D8 restorer line showed functional annotations related to anther development and pathway enrichment in the biosynthesis of secondary metabolites. Further analysis identified potentially key genes located in the target region of fertility restorer genes Rf1 or Rf2. In particular, Ghir_D05G032450 can be the candidate gene related to restorer gene Rf1, and Ghir_D05G035690 can be the candidate gene associated with restorer gene Rf2. Further gene expression validation with qRT-PCR confirmed the accuracy of our results. Our findings provide useful insights into decoding the potential regulatory network that retrieves pollen fertility in cotton and will help to further reveal the differences in the genetic basis of fertility restoration for two CMS systems.
Collapse
Affiliation(s)
- Xiatong Song
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Meng Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kashif Shahzad
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Juanjuan Feng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yang Han
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Jianyong Wu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
13
|
Kitazaki K, Oda K, Akazawa A, Iwahori R. Molecular genetics of cytoplasmic male sterility and restorer-of-fertility for the fine tuning of pollen production in crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:156. [PMID: 37330934 DOI: 10.1007/s00122-023-04398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
Cytoplasmic male sterility (CMS) is an increasingly important issue within the context of hybrid seed production. Its genetic framework is simple: S-cytoplasm for male sterility induction and dominant allele of the restorer-of-fertility gene (Rf) for suppression of S. However, breeders sometimes encounter a phenotype of CMS plants too complex to be explained via this simple model. The molecular basis of CMS provides clue to the mechanisms that underlie the expression of CMS. Mitochondria have been associated with S, and several unique ORFs to S-mitochondria are thought to be responsible for the induction of male sterility in various crops. Their functions are still the subject of debate, but they have been hypothesized to emit elements that trigger sterility. Rf suppresses the action of S by various mechanisms. Some Rfs, including those that encode the pentatricopeptide repeat (PPR) protein and other proteins, are now considered members of unique gene families that are specific to certain lineages. Additionally, they are thought to be complex loci in which several genes in a haplotype simultaneously counteract an S-cytoplasm and differences in the suite of genes in a haplotype can lead to multiple allelism including strong and weak Rf at phenotypic level. The stability of CMS is influenced by factors such as the environment, cytoplasm, and genetic background; the interaction of these factors is also important. In contrast, unstable CMS becomes inducible CMS if its expression can be controlled. CMS becomes environmentally sensitive in a genotype-dependent manner, suggesting the feasibility of controlling the expression of CMS.
Collapse
Affiliation(s)
- Kazuyoshi Kitazaki
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Kotoko Oda
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiho Akazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoma Iwahori
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
14
|
Saxena S, Das A, Kaila T, Ramakrishna G, Sharma S, Gaikwad K. Genomic survey of high-throughput RNA-Seq data implicates involvement of long intergenic non-coding RNAs (lincRNAs) in cytoplasmic male-sterility and fertility restoration in pigeon pea. Genes Genomics 2023; 45:783-811. [PMID: 37115379 DOI: 10.1007/s13258-023-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/21/2022] [Indexed: 04/29/2023]
Abstract
BACKGROUND Long-intergenic non-coding RNAs (lincRNAs) originate from intergenic regions and have no coding potential. LincRNAs have emerged as key players in the regulation of various biological processes in plant development. Cytoplasmic male-sterility (CMS) in association with restorer-of-fertility (Rf) systems makes it a highly reliable tool for exploring heterosis for producing commercial hybrid seeds. To date, there have been no reports of lincRNAs during pollen development in CMS and fertility restorer lines in pigeon pea. OBJECTIVE Identification of lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines. METHODS We employed a computational approach to identify lincRNAs in the floral buds of cytoplasmic male-sterile (AKCMS11) and fertility restorer (AKPR303) pigeon pea lines using RNA-Seq data. RESULTS We predicted a total of 2145 potential lincRNAs of which 966 were observed to be differentially expressed between the sterile and fertile pollen. We identified, 927 cis-regulated and 383 trans-regulated target genes of the lincRNAs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the target genes revealed that these genes were specifically enriched in pathways like pollen and pollen tube development, oxidative phosphorylation, etc. We detected 23 lincRNAs that were co-expressed with 17 pollen-related genes with known functions. Fifty-nine lincRNAs were predicted to be endogenous target mimics (eTMs) for 25 miRNAs, and found to be associated with pollen development. The, lincRNA regulatory networks revealed that different lincRNA-miRNA-mRNA networks might be associated with CMS and fertility restoration. CONCLUSION Thus, this study provides valuable information by highlighting the functions of lincRNAs as regulators during pollen development in pigeon pea and utilization in hybrid seed production.
Collapse
Affiliation(s)
- Swati Saxena
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Antara Das
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Tanvi Kaila
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - G Ramakrishna
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Sandhya Sharma
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, LBS Building, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
15
|
Zhang T, Xuan L, Mao Y, Hu Y. Cotton heterosis and hybrid cultivar development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:89. [PMID: 37000242 DOI: 10.1007/s00122-023-04334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Cotton, the most important economic crop in the world, displays strong hybrid vigor, and has long been a subject for hybrid cultivar breeding. Here, advances in the theoretical and applied research in cotton heterosis along with its hybrid cultivar development by hand-emasculation and pollination (HEP), cytoplasmic (CMS) and genic male sterile lines (GMS) mainly in China during the past few decades are presented in this review. Three types of hybrids produced by HEP, CMS and GMS facilitating hybrid seed production with hand-pollination have been developed and are being planted simultaneously in cotton production. However, most hybrids commercially planted in production are produced by HEP, therefore, F2 seeds are being extensively planted due to the high cost to produce F1 seed. F2 generations of these combinations exceed the check cultivars in yield usually up to 5~15%. GMS genes (ms2 and ms5ms6) used in hybrid seed production and casual mitochondrial genes for G. harknessii CMS have been cloned. Challenges and opportunities in cotton heterosis and future hybrid cultivar development in cotton are discussed.
Collapse
Affiliation(s)
- Tianzhen Zhang
- The Advanced Seed Institute, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Lisha Xuan
- The Advanced Seed Institute, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Mao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Yan Hu
- The Advanced Seed Institute, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Khrustaleva L, Nzeha M, Ermolaev A, Nikitina E, Romanov V. Two-Step Identification of N-, S-, R- and T-Cytoplasm Types in Onion Breeding Lines Using High-Resolution Melting (HRM)-Based Markers. Int J Mol Sci 2023; 24:ijms24021605. [PMID: 36675118 PMCID: PMC9866120 DOI: 10.3390/ijms24021605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 12/22/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
High-resolution melting (HRM) analysis is a powerful detection method for fast, high-throughput post-PCR analysis. A two-step HRM marker system was developed for identification of the N-, S-, R- and T-cytoplasms of onion. In the first step for the identification of N-, S- and R-cytoplasms, one forward primer was designed to the identical sequences of both cox1 and orf725 genes, and two reverse primers specific to the polymorphic sequences of cox1 and orf725 genes were used. For the second step, breeding lines with N-cytoplasm were evaluated with primers developed from the orfA501 sequence to distinguish between N- and T-cytoplasms. An amplicon with primers to the mitocondrial atp9 gene was used as an internal control. The two-step HRM marker system was tested using 246 onion plants. HRM analysis showed that the most common source of CMS, often used by Russian breeders, was S-cytoplasm; the rarest type of CMS was R-cytoplasm; and the proportion of T-cytoplasm among the analyzed breeding lines was 20.5%. The identification of the cytoplasm of a single plant by phenotype takes from 4 to 8 years. The HRM-based system enables quick and easy distinguishing of the four types of onion cytoplasm.
Collapse
Affiliation(s)
- Ludmila Khrustaleva
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49, Timiryazevskaya Str., 127550 Moscow, Russia
- All-Russian Research Institute of Agricultural Biotechnology, Timiryazevskaya 42 Str., 127550 Moscow, Russia
- Correspondence: or
| | - Mais Nzeha
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49, Timiryazevskaya Str., 127550 Moscow, Russia
| | - Aleksey Ermolaev
- Center of Molecular Biotechnology, Russian State Agrarian University-Moscow Timiryazev Agricultural Academy, 49, Timiryazevskaya Str., 127550 Moscow, Russia
- All-Russian Research Institute of Agricultural Biotechnology, Timiryazevskaya 42 Str., 127550 Moscow, Russia
| | - Ekaterina Nikitina
- All-Russian Research Institute of Agricultural Biotechnology, Timiryazevskaya 42 Str., 127550 Moscow, Russia
| | - Valery Romanov
- Federal Scientific Vegetable Center, Selectionaya St. 14, VNIISSOK, Odintsovo Region, 143072 Moscow, Russia
| |
Collapse
|
17
|
Chamusco KC, Milazzo MN, Bhan KS, Kamps TL, Smith P, Durojaiye M, Moreira CD, Gallo M, Chase CD. Developmentally regulated mitochondrial biogenesis and cell death competence in maize pollen. BMC PLANT BIOLOGY 2022; 22:508. [PMID: 36316635 PMCID: PMC9624016 DOI: 10.1186/s12870-022-03897-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Cytoplasmic male sterility (CMS) is a maternally inherited failure to produce functional pollen that most commonly results from expression of novel, chimeric mitochondrial genes. In Zea mays, cytoplasmic male sterility type S (CMS-S) is characterized by the collapse of immature, bi-cellular pollen. Molecular and cellular features of developing CMS-S and normal (N) cytoplasm pollen were compared to determine the role of mitochondria in these differing developmental fates. RESULTS Terminal deoxynucleotidyl transferase dUTP nick end labeling revealed both chromatin and nuclear fragmentation in the collapsed CMS-S pollen, demonstrating a programmed cell death (PCD) event sharing morphological features with mitochondria-signaled apoptosis in animals. Maize plants expressing mitochondria-targeted green fluorescent protein (GFP) demonstrated dynamic changes in mitochondrial morphology and association with actin filaments through the course of N-cytoplasm pollen development, whereas mitochondrial targeting of GFP was lost and actin filaments were disorganized in developing CMS-S pollen. Immunoblotting revealed significant developmental regulation of mitochondrial biogenesis in both CMS-S and N mito-types. Nuclear and mitochondrial genome encoded components of the cytochrome respiratory pathway and ATP synthase were of low abundance at the microspore stage, but microspores accumulated abundant nuclear-encoded alternative oxidase (AOX). Cytochrome pathway and ATP synthase components accumulated whereas AOX levels declined during the maturation of N bi-cellular pollen. Increased abundance of cytochrome pathway components and declining AOX also characterized collapsed CMS-S pollen. The accumulation and robust RNA editing of mitochondrial transcripts implicated translational or post-translational control for the developmentally regulated accumulation of mitochondria-encoded proteins in both mito-types. CONCLUSIONS CMS-S pollen collapse is a PCD event coincident with developmentally programmed mitochondrial events including the accumulation of mitochondrial respiratory proteins and declining protection against mitochondrial generation of reactive oxygen species.
Collapse
Affiliation(s)
- Karen C Chamusco
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611-0690, USA
| | - May N Milazzo
- Emergency Department, Baton Rouge General Medical Center, Baton Rouge, LA, 70809, USA
| | - Kanchan S Bhan
- Department of Plant Molecular Biology and Biotechnology, Indira Gandhi Agricultural University, Raipur, C.G., 492012, India
| | - Terry L Kamps
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611-0690, USA
| | - Prestina Smith
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Modupeoluwa Durojaiye
- Department of Family and Community Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Cristina D Moreira
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, 27412, USA
| | - Maria Gallo
- Department of Plant and Earth Science, University of Wisconsin-River Falls, River Falls, WI, 54022, USA
| | - Christine D Chase
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611-0690, USA.
| |
Collapse
|
18
|
Yang Z, Ni Y, Lin Z, Yang L, Chen G, Nijiati N, Hu Y, Chen X. De novo assembly of the complete mitochondrial genome of sweet potato (Ipomoea batatas [L.] Lam) revealed the existence of homologous conformations generated by the repeat-mediated recombination. BMC PLANT BIOLOGY 2022; 22:285. [PMID: 35681138 PMCID: PMC9185937 DOI: 10.1186/s12870-022-03665-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/30/2022] [Indexed: 05/27/2023]
Abstract
Sweet potato (Ipomoea batatas [L.] Lam) is an important food crop, an excellent fodder crop, and a new type of industrial raw material crop. The lack of genomic resources could affect the process of industrialization of sweet potato. Few detailed reports have been completed on the mitochondrial genome of sweet potato. In this research, we sequenced and assembled the mitochondrial genome of sweet potato and investigated its substructure. The mitochondrial genome of sweet potato is 270,304 bp with 23 unique core genes and 12 variable genes. We detected 279 pairs of repeat sequences and found that three pairs of direct repeats could mediate the homologous recombination into four independent circular molecules. We identified 70 SSRs in the whole mitochondrial genome of sweet potato. The longest dispersed repeat in mitochondrial genome was a palindromic repeat with a length of 915 bp. The homologous fragments between the chloroplast and mitochondrial genome account for 7.35% of the mitochondrial genome. We also predicted 597 RNA editing sites and found that the rps3 gene was edited 54 times, which occurred most frequently. This study further demonstrates the existence of multiple conformations in sweet potato mitochondrial genomes and provides a theoretical basis for the evolution of higher plants and cytoplasmic male sterility breeding.
Collapse
Affiliation(s)
- Zhijian Yang
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yang Ni
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zebin Lin
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
| | - Liubin Yang
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
| | - Guotai Chen
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
| | - Nuerla Nijiati
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
| | - Yunzhuo Hu
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
| | - Xuanyang Chen
- Key Laboratory of Crop Biotechnology, Fujian Agriculture and Forestry University, Fujian Province Universities, Fuzhou, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fuzhou, Fujian China
| |
Collapse
|
19
|
Attia Z, Pogoda C, Vergara D, Kane NC. Mitochondrial genomes do not appear to regulate flowering pattern/reproductive strategy in Cannabis sativa. AOB PLANTS 2022; 14:plab068. [PMID: 35558164 PMCID: PMC9089828 DOI: 10.1093/aobpla/plab068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/05/2021] [Indexed: 06/15/2023]
Abstract
Currently, the amount of genetic data for Cannabis is lacking due to the illegal nature of the plant. Our study used 73 Cannabis sativa whole-genome shotgun libraries to reveal eight different mtDNA haplotypes. The most common haplotype contained 60 of the 73 samples studied and was composed of only dioecious individuals. However, other haplotypes contained a mix of both mating strategies (i.e. monoecious and dioecious). From these haplotype groupings we further examined the fully annotated mitochondrial genomes of four hemp individuals with different mt haplotypes and recorded gene content, copy number variation and synteny. Our results revealed highly syntenic mitochondrial genomes that contained ~60 identifiable sequences for protein-coding genes, tRNAs and rRNAs and no obvious rearrangements or chimeric genes. We found no clear evidence that modern reproductive patterns are due to simple cytoplasmic male sterility mutations. It is likely the interaction between nuclear genetic components and the X/Y sex chromosomes that determines reproductive strategy. Additionally, we added 50 % more mitochondrial genomes to the publicly available repository.
Collapse
Affiliation(s)
- Ziv Attia
- Ecology and Evolutionary and Biology, University of Colorado, Boulder, 1900 Pleasant Street, Boulder, CO 80302, USA
| | - Cloe Pogoda
- Ecology and Evolutionary and Biology, University of Colorado, Boulder, 1900 Pleasant Street, Boulder, CO 80302, USA
| | - Daniela Vergara
- Ecology and Evolutionary and Biology, University of Colorado, Boulder, 1900 Pleasant Street, Boulder, CO 80302, USA
| | - Nolan C Kane
- Ecology and Evolutionary and Biology, University of Colorado, Boulder, 1900 Pleasant Street, Boulder, CO 80302, USA
| |
Collapse
|
20
|
You J, Li M, Li H, Bai Y, Zhu X, Kong X, Chen X, Zhou R. Integrated Methylome and Transcriptome Analysis Widen the Knowledge of Cytoplasmic Male Sterility in Cotton ( Gossypium barbadense L.). FRONTIERS IN PLANT SCIENCE 2022; 13:770098. [PMID: 35574131 PMCID: PMC9093596 DOI: 10.3389/fpls.2022.770098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
DNA methylation is defined as a conserved epigenetic modification mechanism that plays a key role in maintaining normal gene expression without altering the DNA sequence. Several studies have reported that altered methylation patterns were associated with male sterility in some plants such as rice and wheat, but global methylation profiles and their possible roles in cytoplasmic male sterility (CMS), especially in cotton near-isogenic lines, remain unclear. In this study, bisulfite sequencing technology and RNA-Seq were used to investigate CMS line 07-113A and its near-isogenic line 07-113B. Using integrated methylome and transcriptome analyses, we found that the number of hypermethylated genes in the differentially methylated regions, whether in the promoter region or in the gene region, was more in 07-113A than the number in 07-113B. The data indicated that 07-113A was more susceptible to methylation. In order to further analyze the regulatory network of male sterility, transcriptome sequencing and DNA methylation group data were used to compare the characteristics of near-isogenic lines 07-113A and 07-113B in cotton during the abortion stage. Combined methylation and transcriptome analysis showed that differentially expressed methylated genes were mainly concentrated in vital metabolic pathways including the starch and sucrose metabolism pathways and galactose metabolism. And there was a negative correlation between gene methylation and gene expression. In addition, five key genes that may be associated with CMS in cotton were identified. These data will support further understanding of the effect of DNA methylation on gene expression and their potential roles in cotton CMS.
Collapse
Affiliation(s)
- Jingyi You
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Min Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Hongwei Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Yulin Bai
- Xinjiang Yida Textile Co., Ltd, Urumqi, China
| | - Xuan Zhu
- Dali Bai Autonomous Prefecture Agricultural Science Extension Institute, Dali, China
| | - Xiangjun Kong
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiaoyan Chen
- Dali Bai Autonomous Prefecture Agricultural Science Extension Institute, Dali, China
| | - Ruiyang Zhou
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
21
|
Breton S, Stewart DT, Brémaud J, Havird JC, Smith CH, Hoeh WR. Did doubly uniparental inheritance (DUI) of mtDNA originate as a cytoplasmic male sterility (CMS) system? Bioessays 2022; 44:e2100283. [PMID: 35170770 PMCID: PMC9083018 DOI: 10.1002/bies.202100283] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 01/10/2023]
Abstract
Animal and plant species exhibit an astonishing diversity of sexual systems, including environmental and genetic determinants of sex, with the latter including genetic material in the mitochondrial genome. In several hermaphroditic plants for example, sex is determined by an interaction between mitochondrial cytoplasmic male sterility (CMS) genes and nuclear restorer genes. Specifically, CMS involves aberrant mitochondrial genes that prevent pollen development and specific nuclear genes that restore it, leading to a mixture of female (male-sterile) and hermaphroditic individuals in the population (gynodioecy). Such a mitochondrial-nuclear sex determination system is thought to be rare outside plants. Here, we present one possible case of CMS in animals. We hypothesize that the only exception to the strict maternal mtDNA inheritance in animals, the doubly uniparental inheritance (DUI) system in bivalves, might have originated as a mitochondrial-nuclear sex-determination system. We document and explore similarities that exist between DUI and CMS, and we propose various ways to test our hypothesis.
Collapse
Affiliation(s)
- Sophie Breton
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Donald T Stewart
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Julie Brémaud
- Département des sciences biologiques, Université de Montréal, Montréal, Québec, Canada
| | - Justin C Havird
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Chase H Smith
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Walter R Hoeh
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
22
|
Bychkova V, Elkonin L. Effect of sterile cytoplasms on content of absolutely dry matter in the grain sorghum hybrids. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224301008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Analysis of absolutely dry matter (ADM) accumulation is important indicator of productivity of crop plants. For three seasons, we investigated the effect of sterile cytoplasms on content of ADM in the F1 hybrids of grain sorghum obtained on the basis of two series of alloplasmic iso-nuclear CMS-lines: (1) with A3, A4, and 9E cytoplasms and (2) with 9E and M35-1A cytoplasms. For the first time, the effect of the type of sterile cytoplasm on content of ADM in the F1 sorghum hybrids was shown. In each season, A3 cytoplasm reduced ADM in the F1 hybrids at the “tillering – heading” stage, whereas 9E cytoplasm increased ADM at the “heading – complete maturity” stage. The most significant differences were observed under drought conditions. These data indicate the genetic influence of cytoplasm on assimilation capacity of sorghum hybrids and tolerance to drought stress.
Collapse
|
23
|
Møller IM, Rasmusson AG, Van Aken O. Plant mitochondria - past, present and future. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:912-959. [PMID: 34528296 DOI: 10.1111/tpj.15495] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
The study of plant mitochondria started in earnest around 1950 with the first isolations of mitochondria from animal and plant tissues. The first 35 years were spent establishing the basic properties of plant mitochondria and plant respiration using biochemical and physiological approaches. A number of unique properties (compared to mammalian mitochondria) were observed: (i) the ability to oxidize malate, glycine and cytosolic NAD(P)H at high rates; (ii) the partial insensitivity to rotenone, which turned out to be due to the presence of a second NADH dehydrogenase on the inner surface of the inner mitochondrial membrane in addition to the classical Complex I NADH dehydrogenase; and (iii) the partial insensitivity to cyanide, which turned out to be due to an alternative oxidase, which is also located on the inner surface of the inner mitochondrial membrane, in addition to the classical Complex IV, cytochrome oxidase. With the appearance of molecular biology methods around 1985, followed by genomics, further unique properties were discovered: (iv) plant mitochondrial DNA (mtDNA) is 10-600 times larger than the mammalian mtDNA, yet it only contains approximately 50% more genes; (v) plant mtDNA has kept the standard genetic code, and it has a low divergence rate with respect to point mutations, but a high recombinatorial activity; (vi) mitochondrial mRNA maturation includes a uniquely complex set of activities for processing, splicing and editing (at hundreds of sites); (vii) recombination in mtDNA creates novel reading frames that can produce male sterility; and (viii) plant mitochondria have a large proteome with 2000-3000 different proteins containing many unique proteins such as 200-300 pentatricopeptide repeat proteins. We describe the present and fairly detailed picture of the structure and function of plant mitochondria and how the unique properties make their metabolism more flexible allowing them to be involved in many diverse processes in the plant cell, such as photosynthesis, photorespiration, CAM and C4 metabolism, heat production, temperature control, stress resistance mechanisms, programmed cell death and genomic evolution. However, it is still a challenge to understand how the regulation of metabolism and mtDNA expression works at the cellular level and how retrograde signaling from the mitochondria coordinates all those processes.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, Forsøgsvej 1, DK-4200, Slagelse, Denmark
| | | | | |
Collapse
|
24
|
Zheng H, Wang R, Jiang Q, Zhang D, Mu R, Xu Y, Nnaemeka VE, Mei J, Zhao Y, Cai F, Yu D, Sun Y, Ke L. Identification and functional analysis of a pollen fertility-associated gene GhGLP4 of Gossypium hirsutum L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3237-3247. [PMID: 34272568 DOI: 10.1007/s00122-021-03888-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE Cotton male fertility-associated gene GhGLP4, encoding a germin-like protein, is essential for anthers development by keeping ROS homeostasis through reducing H2O2 level. Utilization of heterosis is an important way to increase cotton yield and improve fiber quality in hybrid cotton development programs. Male sterility is used in the development of cotton hybrids to reduce the cost of hybrid seed production by eliminating the process of emasculation. From the transcriptome analysis of genic male sterile mutant (ms1) and its background C312 of G. hirsutum, a gene encoding germin-like protein (GhGLP4) was found significantly down-regulated in different developmental stages of ms1 anthers. To explore the gene function in cotton fertility, GhGLP4 was further studied and interfered by virus-induced gene silencing. In the GhGLP4 interfered cotton lines, the expression level of GhGLP4 was significantly decreased in the stamens, and the down-regulation of GhGLP4 resulted in pollen sac closure, stigma exertion, filament shortening, decrease in the number of anthers and complete male sterility. The expression levels of respiratory burst oxidase homologs (Rboh, NADPH oxidase) were significantly altered. Further investigation showed that the SOD activity decreased while the H2O2 content increased in the atypical stamens. These results indicated that GhGLP4 gene affected the cotton anther development through maintenance of ROS homeostasis by H2O2 reduction.
Collapse
Affiliation(s)
- Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Rongjia Wang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Qimeng Jiang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Diandian Zhang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Rongrong Mu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Yihan Xu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Vitalis E Nnaemeka
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Jun Mei
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Yanyan Zhao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Fangfang Cai
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Dongliang Yu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016, Zhejiang, China.
| |
Collapse
|
25
|
Comparative analysis of the complete mitochondrial genome sequences and anther development cytology between maintainer and Ogura-type cytoplasm male-sterile cabbage (B. oleracea Var. capitata). BMC Genomics 2021; 22:646. [PMID: 34493212 PMCID: PMC8425178 DOI: 10.1186/s12864-021-07963-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Background Cytoplasmic male sterility (CMS) has been widely used for commercial F1 hybrid seeds production. CMS is primarily caused by chimeric genes in mitochondrial genomes. However, which specific stages of anther development in cabbage are affected by the chimeric genes remain unclear. Results In the present study, the complete mitochondrial genomes were sequenced and assembled for the maintainer and Ogura CMS cabbage lines. The genome size of the maintainer and Ogura CMS cabbage are 219,962 bp and 236,648 bp, respectively. There are 67 and 69 unknown function ORFs identified in the maintainer and Ogura CMS cabbage mitochondrial genomes, respectively. Four orfs, orf102a, orf122b, orf138a and orf154a were specifically identified in the Ogura CMS mitochondrial genome, which were likely generated by recombination with Ogura type radish during breeding process. Among them, ORF138a and ORF154a possessed a transmembrane structure, and orf138a was co-transcribed with the atp8 and trnfM genes. orf154a is partially homologous to the ATP synthase subunit 1 (atpA) gene. Both these genes were likely responsible for the CMS phenotype. In addition, cytological sections showed that the abnormal proliferation of tapetal cells might be the immediate cause of cytoplasmic male-sterility in Ogura CMS cabbage lines. RNA-seq results showed that orf138a and orf154a in Ogura CMS might influence transcript levels of genes in energy metabolic pathways. Conclusions The presence of orf138a and orf154a lead to increased of ATPase activity and ATP content by affecting the transcript levels of genes in energy metabolic pathways, which could provide more energy for the abnormal proliferation of tapetal cells. Our data provides new insights into cytoplasmic male-sterility from whole mitochondrial genomes, cytology of anther development and transcriptome data. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07963-x.
Collapse
|
26
|
Makarenko MS, Omelchenko DO, Usatov AV, Gavrilova VA. The Insights into Mitochondrial Genomes of Sunflowers. PLANTS (BASEL, SWITZERLAND) 2021; 10:1774. [PMID: 34579307 PMCID: PMC8466785 DOI: 10.3390/plants10091774] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022]
Abstract
The significant difference in the mtDNA size and structure with simultaneous slow evolving genes makes the mitochondrial genome paradoxical among all three DNA carriers in the plant cell. Such features make mitochondrial genome investigations of particular interest. The genus Helianthus is a diverse taxonomic group, including at least two economically valuable species-common sunflower (H. annuus) and Jerusalem artichoke (H. tuberosus). The successful investigation of the sunflower nuclear genome provided insights into some genomics aspects and significantly intensified sunflower genetic studies. However, the investigations of organelles' genetic information in Helianthus, especially devoted to mitochondrial genomics, are presented by limited studies. Using NGS sequencing, we assembled the complete mitochondrial genomes for H. occidentalis (281,175 bp) and H. tuberosus (281,287 bp) in the current investigation. Besides the master circle chromosome, in the case of H. tuberosus, the 1361 bp circular plasmid was identified. The mitochondrial gene content was found to be identical for both sunflower species, counting 32 protein-coding genes, 3 rRNA, 23 tRNA genes, and 18 ORFs. The comparative analysis between perennial sunflowers revealed common and polymorphic SSR and SNPs. Comparison of perennial sunflowers with H. annuus allowed us to establish similar rearrangements in mitogenomes, which have possibly been inherited from a common ancestor after the divergence of annual and perennial sunflower species. It is notable that H. occidentalis and H. tuberosus mitogenomes are much more similar to H. strumosus than H. grosseserratus.
Collapse
Affiliation(s)
- Maksim S. Makarenko
- The Laboratory of Plant Genomics, The Institute for Information Transmission Problems, 127051 Moscow, Russia;
| | - Denis O. Omelchenko
- The Laboratory of Plant Genomics, The Institute for Information Transmission Problems, 127051 Moscow, Russia;
| | - Alexander V. Usatov
- The Department of Genetics, Southern Federal University, 344006 Rostov-on-Don, Russia;
| | - Vera A. Gavrilova
- Oil and Fiber Crops Genetic Resources Department, The N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190031 Saint Petersburg, Russia;
| |
Collapse
|
27
|
Liu T, Arsenault J, Vierling E, Kim M. Mitochondrial ATP synthase subunit d, a component of the peripheral stalk, is essential for growth and heat stress tolerance in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:713-726. [PMID: 33974298 DOI: 10.1111/tpj.15317] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 05/11/2023]
Abstract
As rapid changes in climate threaten global crop yields, an understanding of plant heat stress tolerance is increasingly relevant. Heat stress tolerance involves the coordinated action of many cellular processes and is particularly energy demanding. We acquired a knockout mutant and generated knockdown lines in Arabidopsis thaliana of the d subunit of mitochondrial ATP synthase (gene name: ATPQ, AT3G52300, referred to hereafter as ATPd), a subunit of the peripheral stalk, and used these to investigate the phenotypic significance of this subunit in normal growth and heat stress tolerance. Homozygous knockout mutants for ATPd could not be obtained due to gametophytic defects, while heterozygotes possess no visible phenotype. Therefore, we used RNA interference to create knockdown plant lines for further studies. Proteomic analysis and blue native gels revealed that ATPd downregulation impairs only subunits of the mitochondrial ATP synthase (complex V). Knockdown plants were more sensitive to heat stress, had abnormal leaf morphology, and were severely slow growing compared to wild type. These results indicate that ATPd plays a crucial role in proper function of the mitochondrial ATP synthase holoenzyme, which, when reduced, leads to wide-ranging defects in energy-demanding cellular processes. In knockdown plants, more hydrogen peroxide accumulated and mitochondrial dysfunction stimulon (MDS) genes were activated. These data establish the essential structural role of ATPd and support the importance of complex V in normal plant growth, and provide new information about its requirement for heat stress tolerance.
Collapse
Affiliation(s)
- Tianxiang Liu
- University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Northwest Agriculture and Forestry University, Yangling, Shaanxi, 712100, China
| | - Jesse Arsenault
- University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | | | - Minsoo Kim
- University of Massachusetts Amherst, Amherst, MA, 01003, USA
| |
Collapse
|
28
|
Xu C, Tao Y, Fu X, Guo L, Xing H, Li C, Yang Z, Su H, Wang X, Hu J, Fan D, Chiang VL, Luo K. The microRNA476a-RFL module regulates adventitious root formation through a mitochondria-dependent pathway in Populus. THE NEW PHYTOLOGIST 2021; 230:2011-2028. [PMID: 33533479 DOI: 10.1111/nph.17252] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/19/2021] [Indexed: 05/25/2023]
Abstract
For woody plants, clonal propagation efficiency is largely determined by adventitious root (AR) formation at the bases of stem cuttings. However, our understanding of the molecular mechanisms contributing to AR morphogenesis in trees remains limited, despite the importance of vegetative propagation, currently the most common practice for tree breeding and commercialization. Here, we identified Populus-specific miR476a as a regulator of wound-induced adventitious rooting that acts by orchestrating mitochondrial homeostasis. MiR476a exhibited inducible expression during AR formation and directly targeted several Restorer of Fertility like (RFL) genes encoding mitochondrion-localized pentatricopeptide repeat proteins. Genetic modification of miR476a-RFL expression revealed that miR476a/RFL-mediated dynamic regulation of mitochondrial homeostasis influences AR formation in poplar. Mitochondrial perturbation via exogenous application of a chemical inhibitor indicated that miR476a/RFL-directed AR formation depends on mitochondrial regulation that acts via auxin signaling. Our results thus establish a microRNA-directed mitochondrion-auxin signaling cascade required for AR development, providing insights into the role of mitochondrial regulation in the developmental plasticity of plants.
Collapse
Affiliation(s)
- Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Yuanxun Tao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Li Guo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Haitao Xing
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Chaofeng Li
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ziwei Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Huili Su
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xianqiang Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Di Fan
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
29
|
Rose RJ. Contribution of Massive Mitochondrial Fusion and Subsequent Fission in the Plant Life Cycle to the Integrity of the Mitochondrion and Its Genome. Int J Mol Sci 2021; 22:5429. [PMID: 34063907 PMCID: PMC8196625 DOI: 10.3390/ijms22115429] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
Plant mitochondria have large genomes to house a small number of key genes. Most mitochondria do not contain a whole genome. Despite these latter characteristics, the mitochondrial genome is faithfully maternally inherited. To maintain the mitochondrial genes-so important for energy production-the fusion and fission of mitochondria are critical. Fission in plants is better understood than fusion, with the dynamin-related proteins (DRP 3A and 3B) driving the constriction of the mitochondrion. How the endoplasmic reticulum and the cytoskeleton are linked to the fission process is not yet fully understood. The fusion mechanism is less well understood, as obvious orthologues are not present. However, there is a recently described gene, MIRO2, that appears to have a significant role, as does the ER and cytoskeleton. Massive mitochondrial fusion (MMF or hyperfusion) plays a significant role in plants. MMF occurs at critical times of the life cycle, prior to flowering, in the enlarging zygote and at germination, mixing the cells' mitochondrial population-the so-called "discontinuous whole". MMF in particular aids genome repair, the conservation of critical genes and possibly gives an energy boost to important stages of the life cycle. MMF is also important in plant regeneration, an important component of plant biotechnology.
Collapse
Affiliation(s)
- Ray J Rose
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
30
|
Singh S, Bhatia R, Kumar R, Behera TK, Kumari K, Pramanik A, Ghemeray H, Sharma K, Bhattacharya RC, Dey SS. Elucidating Mitochondrial DNA Markers of Ogura-Based CMS Lines in Indian Cauliflowers ( Brassica oleracea var. botrytis L.) and Their Floral Abnormalities Due to Diversity in Cytonuclear Interactions. FRONTIERS IN PLANT SCIENCE 2021; 12:631489. [PMID: 33995434 PMCID: PMC8120243 DOI: 10.3389/fpls.2021.631489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Mitochondrial markers can be used to differentiate diverse mitotypes as well as cytoplasms in angiosperms. In cauliflower, cultivation of hybrids is pivotal in remunerative agriculture and cytoplasmic male sterile lines constitute an important component of the hybrid breeding. In diversifying the source of male sterility, it is essential to appropriately differentiate among the available male sterile cytoplasms in cauliflower. PCR polymorphism at the key mitochondrial genes associated with male sterility will be instrumental in analyzing, molecular characterization, and development of mitotype-specific markers for differentiation of different cytoplasmic sources. Presence of auto- and alloplasmic cytonuclear combinations result in complex floral abnormalities. In this context, the present investigation highlighted the utility of organelle genome-based markers in distinguishing cytoplasm types in Indian cauliflowers and unveils the epistatic effects of the cytonuclear interactions influencing floral phenotypes. In PCR-based analysis using a set of primers targeted to orf-138, 76 Indian cauliflower lines depicted the presence of Ogura cytoplasm albeit the amplicons generated exhibited polymorphism within the ofr-138 sequence. The polymorphic fragments were found to be spanning over 200-280 bp and 410-470 bp genomic regions of BnTR4 and orf125, respectively. Sequence analysis revealed that such cytoplasmic genetic variations could be attributed to single nucleotide polymorphisms and insertion or deletions of 31/51 nucleotides. The cytoplasmic effects on varying nuclear-genetic backgrounds rendered an array of floral abnormalities like reduction in flower size, fused flowers, splitted style with the exposed ovule, absence of nonfunctional stamens, and petaloid stamens. These floral malformations caused dysplasia of flower structure affecting female fertility with inefficient nectar production. The finding provides an important reference to ameliorate understanding of mechanism of cytonuclear interactions in floral organ development in Brassicas. The study paves the way for unraveling developmental biology of CMS phenotypes in eukaryotic organisms and intergenomic conflict in plant speciation.
Collapse
Affiliation(s)
- Saurabh Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Reeta Bhatia
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Raj Kumar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tusar K. Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Achintya Pramanik
- ICAR-Indian Agricultural Research Institute, Regional Station, Kullu Valley, India
| | - Hemant Ghemeray
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kanika Sharma
- ICAR-Indian Agricultural Research Institute, Regional Station, Kullu Valley, India
| | | | - Shyam S. Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
31
|
Transcriptome and MiRNAomics Analyses Identify Genes Associated with Cytoplasmic Male Sterility in Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2021; 22:ijms22094684. [PMID: 33925234 PMCID: PMC8124215 DOI: 10.3390/ijms22094684] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 11/17/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is important for large-scale hybrid seed production. Rearrangements in the mitochondrial DNA (mtDNA) for the cotton (Gossypium hirsutum L.) CMS line J4A were responsible for pollen abortion. However, the expression patterns of nuclear genes associated with pollen abortion and the molecular basis of CMS for J4A are unknown, and were the objectives of this study by comparing J4A with the J4B maintainer line. Cytological evaluation of J4A anthers showed that microspore abortion occurs during meiosis preventing pollen development. Changes in enzyme activity of mitochondrial respiratory chain complex IV and mitochondrial respiratory chain complex V and the content of ribosomal protein and ATP during anther abortion were observed for J4A suggesting insufficient synthesis of ATP hindered pollen production. Additionally, levels of sucrose, starch, soluble sugar, and fructose were significantly altered in J4A during the meiosis stage, suggesting reduced sugar metabolism contributed to sterility. Transcriptome and miRNAomics analyses identified 4461 differentially expressed mRNAs (DEGs) and 26 differentially expressed microRNAs (DEMIs). Pathway enrichment analysis indicated that the DEMIs were associated with starch and sugar metabolism. Six deduced target gene regulatory pairs that may participate in CMS were identified, ghi-MIR7484-10/mitogen-activated protein kinase kinase 6 (MAPKK6), ghi-undef-156/agamous-like MADS-box protein AGL19 (AGL19), ghi-MIR171-1-22/SNF1-related protein kinase regulatory subunit gamma-1 and protein trichome birefringence-like 38, and ghi-MIR156-(8/36)/WRKY transcription factor 28 (WRKY28). Overall, a putative CMS mechanism involving mitochondrial dysfunction, the ghi-MIR7484-10/MAPKK6 network, and reduced glucose metabolism was suggested, and ghi-MIR7484-10/MAPKK6 may be related to abnormal microspore meiosis and induction of excessive sucrose accumulation in anthers.
Collapse
|
32
|
Bohra A, Rathore A, Gandham P, Saxena RK, Satheesh Naik SJ, Dutta D, Singh IP, Singh F, Rathore M, Varshney RK, Singh NP. Genome-wide comparative transcriptome analysis of the A4-CMS line ICPA 2043 and its maintainer ICPB 2043 during the floral bud development of pigeonpea. Funct Integr Genomics 2021; 21:251-263. [PMID: 33635500 DOI: 10.1007/s10142-021-00775-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Cytoplasmic male sterility (CMS) offers a unique system to understand cytoplasmic nuclear crosstalk, and is also employed for exploitation of hybrid vigor in various crops. Pigeonpea A4-CMS, a predominant source of male sterility, is being used for efficient hybrid seed production. The molecular mechanisms of CMS trait remain poorly studied in pigeonpea. We performed genome-wide transcriptome profiling of A4-CMS line ICPA 2043 and its isogenic maintainer ICPB 2043 at two different stages of floral bud development (stage S1 and stage S2). Consistent with the evidences from some other crops, we also observed significant difference in the expression levels of genes in the later stage, i.e., stage S2. Differential expression was observed for 143 and 55 genes within the two stages of ICPA 2043 and ICPB 2043, respectively. We obtained only 10 differentially expressed genes (DEGs) between the stage S1 of the two genotypes, whereas expression change was significant for 582 genes in the case of stage S2. The qRT-PCR assay of randomly selected six genes supported the differential expression of genes between ICPA 2043 and ICPB 2043. Further, GO and KEGG pathway mapping suggested a possible compromise in key bioprocesses during flower and pollen development. Besides providing novel insights into the functional genomics of CMS trait, our results were in strong agreement with the gene expression atlas of pigeonpea that implicated various candidate genes like sucrose-proton symporter 2 and an uncharacterized protein along with pectate lyase, pectinesterase inhibitors, L-ascorbate oxidase homolog, ATPase, β-galactosidase, polygalacturonase, and aldose 1-epimerase for pollen development of pigeonpea. The dataset presented here provides a rich genomic resource to improve understanding of CMS trait and its deployment in heterosis breeding in pigeonpea.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, 208024, India.
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Prasad Gandham
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - S J Satheesh Naik
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, 208024, India
| | - Dibendu Dutta
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, 208024, India
| | - Indra P Singh
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, 208024, India
| | - Farindra Singh
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, 208024, India
| | - Meenal Rathore
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, 208024, India
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Narendra P Singh
- ICAR-Indian Institute of Pulses Research (ICAR-IIPR), Kanpur, 208024, India
| |
Collapse
|
33
|
Tang D, Wei F, Khan A, Munsif F, Zhou R. Degradation of mitochondrial structure and deficiency of complex I were associated with the transgenic CMS of rice. Biol Res 2021; 54:6. [PMID: 33612118 PMCID: PMC7898427 DOI: 10.1186/s40659-020-00326-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 12/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mitochondria play a significant role in plant cytoplasmic male sterility (CMS). In our previous study, mitochondrial complex I genes, nad4, nad5, and nad7 showed polymorphisms between the transgenic CMS line M2BS and its wild type M2B. The sterility mechanism of the M2BS at cytological, physiological, biochemical, and molecular level is not clear. RESULTS Cytological observation showed that the anthers were light yellow, fissured, invalid in KI-I2, and full of irregularly typical abortion pollen grains in M2BS. Transmission electron microscopic (TEM) observation revealed no nucleus and degraded mitochondria with obscure cristae in anther cells of M2BS. The results of staining for H2O2 presented a large number of electron dense precipitates (edp) in intercellular space of anther cells of M2BS at anthesis. Moreover, the anther respiration rate and complex I activity of M2BS were significantly lower than those of wild type M2B during pollen development. Furthermore, RNA editing results showed only nad7 presented partially edited at 534th nucleotides. The expression of nad5 and nad7 revealed significant differences between M2B and M2BS. CONCLUSIONS Our data demonstrated that mitochondrial structural degradation and complex I deficiency might be associated with transgenic CMS of rice.
Collapse
Affiliation(s)
- Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plant, Nanning, 530023 China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023 China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plant, Nanning, 530023 China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023 China
| | - Aziz Khan
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Fazal Munsif
- College of Agriculture, Guangxi University, Nanning, 530004 China
| | - Ruiyang Zhou
- College of Agriculture, Guangxi University, Nanning, 530004 China
| |
Collapse
|
34
|
Bohra A, Gandham P, Rathore A, Thakur V, Saxena RK, Naik SJS, Varshney RK, Singh NP. Identification of microRNAs and their gene targets in cytoplasmic male sterile and fertile maintainer lines of pigeonpea. PLANTA 2021; 253:59. [PMID: 33538916 DOI: 10.1007/s00425-021-03568-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Comparative analysis of genome-wide miRNAs and their gene targets between cytoplasmic male sterile (CMS) and fertile lines of pigeonpea suggests a possible role of miRNA-regulated pathways in reproductive development. Exploitation of hybrid vigor using CMS technology has delivered nearly 50% yield gain in pigeonpea. Among various sterility-inducing cytoplasms (A1-A9) reported so far in pigeonpea, A2 and A4 are the two major sources that facilitate hybrid seed production. Recent evidence suggests involvement of micro RNA in vast array of biological processes including plant reproductive development. In pigeonpea, information about the miRNAs is insufficient. In view of this, we sequenced six small RNA libraries of CMS line UPAS 120A and isogenic fertile line UPAS 120B using Illumina technology. Results revealed 316 miRNAs including 248 known and 68 novel types. A total of 637 gene targets were predicted for known miRNAs, while 324 genes were associated with novel miRNAs. Degradome analysis revealed 77 gene targets of predicted miRNAs, which included a variety of transcription factors playing key roles in plant reproduction such as F-box family proteins, apetala 2, auxin response factors, ethylene-responsive factors, homeodomain-leucine zipper proteins etc. Differential expression of both known and novel miRNAs implied roles for both conserved as well as species-specific players. We also obtained several miRNA families such as miR156, miR159, miR167 that are known to influence crucial aspects of plant fertility. Gene ontology and pathway level analyses of the target genes showed their possible implications for crucial events during male reproductive development such as tapetal degeneration, pollen wall formation, retrograde signaling etc. To the best of our knowledge, present study is first to combine deep sequencing of small RNA and degradome for elucidating the role of miRNAs in flower and male reproductive development in pigeonpea.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, India.
| | - Prasad Gandham
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Vivek Thakur
- Hyderabad Central University (HCU), Hyderabad, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | |
Collapse
|
35
|
Tang M, Li Z, Luo D, Wei F, Kashif MH, Lu H, Hu Y, Yue J, Huang Z, Tan W, Li R, Chen P. A comprehensive integrated transcriptome and metabolome analyses to reveal key genes and essential metabolic pathways involved in CMS in kenaf. PLANT CELL REPORTS 2021; 40:223-236. [PMID: 33128088 DOI: 10.1007/s00299-020-02628-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Numbers of critical genes and pathways were found from the levels of transcriptome and metabolome, which were useful information for understanding of kenaf CMS mechanism. Cytoplasmic male sterility (CMS) is a maternally inherited trait in higher plants that leads to the inability to produce or release functional pollen. However, there is lack of comprehensive studies to reveal the molecular basis of CMS occurrence in kenaf. Herein, we performed transcriptome and UPLC-MS-based metabolome analyses in the anthers of a CMS (UG93A) and its maintainer (UG93B) to sort out essential genes and metabolites responding to CMS in kenaf. Transcriptome characterized 7769 differentially expressed genes (DEGs) between these two materials, and pathway enrichment analysis indicated that these DEGs were involved mainly in pentose and glucuronate interconversions, starch and sucrose metabolism, taurine and hypotaurine metabolism. In the metabolome assay, a total of 116 significantly different metabolites (SDMs) were identified between the CMS and its maintainer line, and these SDMs were involved in eight KEGG pathways, including flavone and flavonol biosynthesis, glycerophospholipid metabolism, flavonoid biosynthesis, glycosylphosphatidylinositol-anchor biosynthesi. Integrated analyses of transcriptome and metabolome showed that 50 genes had strong correlation coefficient values (R2 > 0.9) with ten metabolites enriched in six pathways; notably, most genes and metabolites of flavonoid biosynthesis pathways and flavone and flavonol biosynthesis pathways involved in flavonoids biosynthetic pathways were downregulated in CMS compared to those in maintainer. Taken together, the decreased accumulation of flavonoids resulted from the compromised biosynthesis pathways coupled with energy deficiency in the anthers may contribute largely to CMS in UG93A of kenaf.
Collapse
Affiliation(s)
- Meiqiong Tang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Botanical Garden of Medicinal Plants, Guangxi Key Laboratory Resources Protection and Genetic Improvement, Nanning, China
| | - Zengqiang Li
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Dengjie Luo
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Fan Wei
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
- Guangxi Botanical Garden of Medicinal Plants, Guangxi Key Laboratory Resources Protection and Genetic Improvement, Nanning, China
| | - Muhammad Haneef Kashif
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Hai Lu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Yali Hu
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Jiao Yue
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Zhen Huang
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Wenye Tan
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning, China
| | - Peng Chen
- Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning, China.
| |
Collapse
|
36
|
Krüger M, Abeyawardana OAJ, Krüger C, Juříček M, Štorchová H. Differentially Expressed Genes Shared by Two Distinct Cytoplasmic Male Sterility (CMS) Types of Silene vulgaris Suggest the Importance of Oxidative Stress in Pollen Abortion. Cells 2020; 9:cells9122700. [PMID: 33339225 PMCID: PMC7766179 DOI: 10.3390/cells9122700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022] Open
Abstract
Cytoplasmic male sterility (CMS), encoded by the interacting mitochondrial and nuclear genes, causes pollen abortion or non-viability. CMS is widely used in agriculture and extensively studied in crops. Much less is known about CMS in wild species. We performed a comparative transcriptomic analysis of male sterile and fertile individuals of Silene vulgaris, a model plant for the study of gynodioecy, to reveal the genes responsible for pollen abortion in this species. We used RNA-seq datasets previously employed for the analysis of mitochondrial and plastid transcriptomes of female and hermaphrodite flower buds, making it possible to compare the transcriptomes derived from three genomes in the same RNA specimen. We assembled de novo transcriptomes for two haplotypes of S. vulgaris and identified differentially expressed genes between the females and hermaphrodites, associated with stress response or pollen development. The gene for alternative oxidase was downregulated in females. The genetic pathways controlling CMS in S. vulgaris are similar to those in crops. The high number of the differentially expressed nuclear genes contrasts with the uniformity of organellar transcriptomes across genders, which suggests these pathways are evolutionarily conserved and that selective mechanisms may shield organellar transcription against changes in the cytoplasmic transcriptome.
Collapse
Affiliation(s)
- Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Oushadee A. J. Abeyawardana
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
- Department of Horticulture, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague 6-Suchdol, Czech Republic
| | - Claudia Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Miloslav Juříček
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
| | - Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic; (M.K.); (O.A.J.A.); (C.K.); (M.J.)
- Correspondence: ; Tel.: +420-225-106-828
| |
Collapse
|
37
|
Anisimova IN. Structural and Functional Organization of Genes That Induce and Suppress Cytoplasmic Male Sterility in Plants. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420110022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Zhang M, Liu J, Ma Q, Qin Y, Wang H, Chen P, Ma L, Fu X, Zhu L, Wei H, Yu S. Deficiencies in the formation and regulation of anther cuticle and tryphine contribute to male sterility in cotton PGMS line. BMC Genomics 2020. [PMID: 33228563 DOI: 10.1186/s12864-020-07250-7251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Male sterility is a simple and efficient pollination control system that is widely exploited in hybrid breeding. In upland cotton, CCRI9106, a photosensitive genetic male sterile (PGMS) mutant isolated from CCRI040029, was reported of great advantages to cotton heterosis. However, little information concerning the male sterility of CCRI9106 is known. Here, comparative transcriptome analysis of CCRI9106 (the mutant, MT) and CCRI040029 (the wild type, WT) anthers in Anyang (long-day, male sterile condition to CCRI9106) was performed to reveal the potential male sterile mechanism of CCRI9106. RESULTS Light and electron microscopy revealed that the male sterility phenotype of MT was mainly attributed to irregularly exine, lacking tryphine and immature anther cuticle. Based on the cytological characteristics of MT anthers, anther RNA libraries (18 in total) of tetrad (TTP), late uninucleate (lUNP) and binucleate (BNP) stages in MT and WT were constructed for transcriptomic analysis, therefore revealing a total of 870,4 differentially expressed genes (DEGs). By performing gene expression pattern analysis and protein-protein interaction (PPI) networks construction, we found down-regulation of DEGs, which enriched by the lipid biosynthetic process and the synthesis pathways of several types of secondary metabolites such as terpenoids, flavonoids and steroids, may crucial to the male sterility phenotype of MT, and resulting in the defects of anther cuticle and tryphine, even the irregularly exine. Furthermore, several lipid-related genes together with ABA-related genes and MYB transcription factors were identified as hub genes via weighted gene co-expression network analysis (WGCNA). Additionally, the ABA content of MT anthers was reduced across all stages when compared with WT anthers. At last, genes related to the formation of anther cuticle and tryphine could activated in MT under short-day condition. CONCLUSIONS We propose that the down-regulation of genes related to the assembly of anther cuticle and tryphine may lead to the male sterile phenotype of MT, and MYB transcription factors together with ABA played key regulatory roles in these processes. The conversion of fertility in different photoperiods may closely relate to the functional expression of these genes. These findings contribute to elucidate the mechanism of male sterility in upland cotton.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Qiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Yuan Qin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China.
| |
Collapse
|
39
|
Zhang M, Liu J, Ma Q, Qin Y, Wang H, Chen P, Ma L, Fu X, Zhu L, Wei H, Yu S. Deficiencies in the formation and regulation of anther cuticle and tryphine contribute to male sterility in cotton PGMS line. BMC Genomics 2020; 21:825. [PMID: 33228563 PMCID: PMC7685665 DOI: 10.1186/s12864-020-07250-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/18/2020] [Indexed: 01/17/2023] Open
Abstract
Background Male sterility is a simple and efficient pollination control system that is widely exploited in hybrid breeding. In upland cotton, CCRI9106, a photosensitive genetic male sterile (PGMS) mutant isolated from CCRI040029, was reported of great advantages to cotton heterosis. However, little information concerning the male sterility of CCRI9106 is known. Here, comparative transcriptome analysis of CCRI9106 (the mutant, MT) and CCRI040029 (the wild type, WT) anthers in Anyang (long-day, male sterile condition to CCRI9106) was performed to reveal the potential male sterile mechanism of CCRI9106. Results Light and electron microscopy revealed that the male sterility phenotype of MT was mainly attributed to irregularly exine, lacking tryphine and immature anther cuticle. Based on the cytological characteristics of MT anthers, anther RNA libraries (18 in total) of tetrad (TTP), late uninucleate (lUNP) and binucleate (BNP) stages in MT and WT were constructed for transcriptomic analysis, therefore revealing a total of 870,4 differentially expressed genes (DEGs). By performing gene expression pattern analysis and protein-protein interaction (PPI) networks construction, we found down-regulation of DEGs, which enriched by the lipid biosynthetic process and the synthesis pathways of several types of secondary metabolites such as terpenoids, flavonoids and steroids, may crucial to the male sterility phenotype of MT, and resulting in the defects of anther cuticle and tryphine, even the irregularly exine. Furthermore, several lipid-related genes together with ABA-related genes and MYB transcription factors were identified as hub genes via weighted gene co-expression network analysis (WGCNA). Additionally, the ABA content of MT anthers was reduced across all stages when compared with WT anthers. At last, genes related to the formation of anther cuticle and tryphine could activated in MT under short-day condition. Conclusions We propose that the down-regulation of genes related to the assembly of anther cuticle and tryphine may lead to the male sterile phenotype of MT, and MYB transcription factors together with ABA played key regulatory roles in these processes. The conversion of fertility in different photoperiods may closely relate to the functional expression of these genes. These findings contribute to elucidate the mechanism of male sterility in upland cotton. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07250-1.
Collapse
Affiliation(s)
- Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Qiang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Yuan Qin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Pengyun Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China.
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Science, Anyang, 455000, China.
| |
Collapse
|
40
|
Ning L, Wang H, Li D, Li Y, Chen K, Chao H, Li H, He J, Li M. Genome-wide identification of the restorer-of-fertility-like (RFL) gene family in Brassica napus and expression analysis in Shaan2A cytoplasmic male sterility. BMC Genomics 2020; 21:765. [PMID: 33148177 PMCID: PMC7641866 DOI: 10.1186/s12864-020-07163-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/20/2020] [Indexed: 02/07/2023] Open
Abstract
Background Cytoplasmic male sterility (CMS) is very important in hybrid breeding. The restorer-of-fertility (Rf) nuclear genes rescue the sterile phenotype. Most of the Rf genes encode pentatricopeptide repeat (PPR) proteins. Results We investigated the restorer-of-fertility-like (RFL) gene family in Brassica napus. A total of 53 BnRFL genes were identified. While most of the BnRFL genes were distributed on 10 of the 19 chromosomes, gene clusters were identified on chromosomes A9 and C8. The number of PPR motifs in the BnRFL proteins varied from 2 to 19, and the majority of BnRFL proteins harbored more than 10 PPR motifs. An interaction network analysis was performed to predict the interacting partners of RFL proteins. Tissue-specific expression and RNA-seq analyses between the restorer line KC01 and the sterile line Shaan2A indicated that BnRFL1, BnRFL5, BnRFL6, BnRFL8, BnRFL11, BnRFL13 and BnRFL42 located in gene clusters on chromosomes A9 and C8 were highly expressed in KC01. Conclusions In the present study, identification and gene expression analysis of RFL gene family in the CMS system were conducted, and seven BnRFL genes were identified as candidates for the restorer genes in Shaan2A CMS. Taken together, this method might provide new insight into the study of Rf genes in other CMS systems. Supplementary Information Supplementary information accompanies this paper at 10.1186/s12864-020-07163-z.
Collapse
Affiliation(s)
- Luyun Ning
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hao Wang
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Dianrong Li
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Yonghong Li
- Hybrid Rape Research Center of Shaanxi Province, Shaanxi Rapeseed Branch of National Centre for Oil Crops Genetic Improvement, Yangling, 712100, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hongbo Chao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, 438000, China.
| |
Collapse
|
41
|
Shi Z, Ren W, Zhao Y, Wang X, Zhang R, Su A, Wang S, Li C, Wang J, Wang S, Zhang Y, Ji Y, Song W, Zhao J. Identification of a locus associated with genic male sterility in maize via EMS mutagenesis and bulked-segregant RNA-seq. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2020.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Qin X, Zhang W, Dong X, Tian S, Zhang P, Zhao Y, Wang Y, Yan J, Yue B. Identification of fertility-related genes for maize CMS-S via Bulked Segregant RNA-Seq. PeerJ 2020; 8:e10015. [PMID: 33062436 PMCID: PMC7532766 DOI: 10.7717/peerj.10015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/01/2020] [Indexed: 01/21/2023] Open
Abstract
Cytoplasmic male sterility (CMS) is extensively used in maize hybrid production, and identification of genes related to fertility restoration for CMS is important for hybrid breeding. The fertility restoration of S type CMS is governed by several loci with major and minor effects, while the mechanism of fertility restoration for CMS-S is still unknown. In this study, BSR-Seq was conducted with two backcrossing populations with the fertility restoration genes, Rf3 and Rf10, respectively. Genetic mapping via BSR-Seq verified the positions of the two loci. A total of 353 and 176 differentially expressed genes (DEGs) between the male fertility and male sterile pools were identified in the populations with Rf3 and Rf10, respectively. In total, 265 DEGs were co-expressed in the two populations, which were up-regulated in the fertile plants, and they might be related to male fertility involving in anther or pollen development. Moreover, 35 and seven DEGs were specifically up-regulated in the fertile plants of the population with Rf3 and Rf10, respectively. Function analysis of these DEGs revealed that jasmonic acid (JA) signal pathway might be involved in the Rf3 mediated fertility restoration for CMS-S, while the small ubiquitin-related modifier system could play a role in the fertility restoration of Rf10.
Collapse
Affiliation(s)
- Xiner Qin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Wenliang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xue Dong
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shike Tian
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Panpan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yanxin Zhao
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yi Wang
- Industrial Crops Research Institution, Heilongjiang Academy of Land Reclamation of Sciences, Haerbin, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Bing Yue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
43
|
Datta A, Kumschick S, Geerts S, Wilson JRU. Identifying safe cultivars of invasive plants: six questions for risk assessment, management, and communication. NEOBIOTA 2020. [DOI: 10.3897/neobiota.62.51635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The regulation of biological invasions is often focussed at the species level. However, the risks posed by infra- and inter-specific entities can be significantly different from the risks posed by the corresponding species, to the extent that they should be regulated and managed differently. In particular, many ornamental plants have been the subject of long-term breeding and selection programmes, with an increasing focus on trying to develop cultivars and hybrids that are less invasive. In this paper, we frame the problem of determining the risk of invasion posed by cultivars or hybrids as a set of six questions that map on to the key components of a risk analysis, viz., risk identification, risk assessment, risk management, and risk communication. 1) Has an infra- or inter-specific entity been proposed as “safe to use” despite at least one of the corresponding species being a harmful invasive? 2) What are the trait differences between the proposed safe alternative and its corresponding invasive species? 3) Do the differences in traits translate into a difference in invasion risk that is significant for regulation? 4) Are the differences spatially and temporally stable? 5) Can the entities be distinguished from each other in practice? 6) What are the appropriate ways to communicate the risks and what can be done to manage them? For each question, we use examples to illustrate how they might be addressed focussing on plant cultivars that are purported to be safe due to sterility. We review the biological basis of sterility, methods used to generate sterile cultivars, and the methods available to confirm sterility. It is apparent that separating invasive genetic entities from less invasive, but closely related, genetic entities in a manner appropriate for regulation currently remains unfeasible in many circumstances – it is a difficult, expensive and potentially fruitless endeavour. Nonetheless, we strongly believe that an a priori assumption of risk should be inherited from the constituent taxa and the onus (and cost) of proof should be held by those who wish to benefit from infra- (or inter-) specific genetic entities. The six questions outlined here provide a general, science-based approach to distinguish closely-related taxa based on the invasion risks they pose.
Collapse
|
44
|
The Investigation of Perennial Sunflower Species ( Helianthus L.) Mitochondrial Genomes. Genes (Basel) 2020; 11:genes11090982. [PMID: 32846894 PMCID: PMC7565312 DOI: 10.3390/genes11090982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/23/2022] Open
Abstract
The genus Helianthus is a diverse taxonomic group with approximately 50 species. Most sunflower genomic investigations are devoted to economically valuable species, e.g., H. annuus, while other Helianthus species, especially perennial, are predominantly a blind spot. In the current study, we have assembled the complete mitogenomes of two perennial species: H. grosseserratus (273,543 bp) and H. strumosus (281,055 bp). We analyzed their sequences and gene profiles in comparison to the available complete mitogenomes of H. annuus. Except for sdh4 and trnA-UGC, both perennial sunflower species had the same gene content and almost identical protein-coding sequences when compared with each other and with annual sunflowers (H. annuus). Common mitochondrial open reading frames (ORFs) (orf117, orf139, and orf334) in sunflowers and unique ORFs for H. grosseserratus (orf633) and H. strumosus (orf126, orf184, orf207) were identified. The maintenance of plastid-derived coding sequences in the mitogenomes of both annual and perennial sunflowers and the low frequency of nonsynonymous mutations point at an extremely low variability of mitochondrial DNA (mtDNA) coding sequences in the Helianthus genus.
Collapse
|
45
|
Lin S, Su S, Jin L, Peng R, Sun D, Ji H, Yu Y, Xu J. Identification of microRNAs and their targets in inflorescences of an Ogura-type cytoplasmic male-sterile line and its maintainer fertile line of turnip (Brassica rapa ssp. rapifera) via high-throughput sequencing and degradome analysis. PLoS One 2020; 15:e0236829. [PMID: 32730367 PMCID: PMC7392268 DOI: 10.1371/journal.pone.0236829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/14/2020] [Indexed: 11/24/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is a widely used trait in angiosperms caused by perturbations in nucleus-mitochondrion interactions that suppress the production of functional pollen. MicroRNAs (miRNAs) are small non-coding RNAs that act as regulatory molecules of transcriptional or post-transcriptional gene silencing in plants. The discovery of miRNAs and their possible implications in CMS induction provides clues for the intricacies and complexity of this phenomenon. Previously, we characterized an Ogura-CMS line of turnip (Brassica rapa ssp. rapifera) that displays distinct impaired anther development with defective microspore production and premature tapetum degeneration. In the present study, high-throughput sequencing was employed for a genome-wide investigation of miRNAs. Six small RNA libraries of inflorescences collected from the Ogura-CMS line and its maintainer fertile (MF) line of turnip were constructed. A total of 120 pre-miRNAs corresponding to 89 mature miRNAs were identified, including 87 conversed miRNAs and 33 novel miRNAs. Among these miRNAs, the expression of 10 differentially expressed mature miRNAs originating from 12 pre-miRNAs was shown to have changed by more than two-fold between inflorescences of the Ogura-CMS line and inflorescences of the MF line, including 8 down- and 2 up-regulated miRNAs. The expression profiles of the differentially expressed miRNAs were confirmed by stem-loop quantitative real-time PCR. In addition, to identify the targets of the identified miRNAs, a degradome analysis was performed. A total of 22 targets of 25 miRNAs and 17 targets of 28 miRNAs were identified as being involved in the reproductive development for Ogura-CMS and MF lines of turnip, respectively. Negative correlations of expression patterns between partial miRNAs and their targets were detected. Some of these identified targets, such as squamosa promoter-binding-like transcription factor family proteins, auxin response factors and pentatricopeptide repeat-containing proteins, were previously reported to be involved in reproductive development in plants. Taken together, our results can help improve the understanding of miRNA-mediated regulatory pathways that might be involved in CMS occurrence in turnip.
Collapse
Affiliation(s)
- Sue Lin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Shiwen Su
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Renyi Peng
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Youjian Yu
- College of Agriculture and Food Science, Zhejiang A & F University, Lin’an, China
| | - Jian Xu
- Wenzhou Vocational College of Science and Technology, Wenzhou, China
| |
Collapse
|
46
|
Logacheva MD, Schelkunov MI, Fesenko AN, Kasianov AS, Penin AA. Mitochondrial Genome of Fagopyrum esculentum and the Genetic Diversity of Extranuclear Genomes in Buckwheat. PLANTS (BASEL, SWITZERLAND) 2020; 9:E618. [PMID: 32408719 PMCID: PMC7285332 DOI: 10.3390/plants9050618] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/27/2022]
Abstract
Fagopyrum esculentum (common buckwheat) is an important agricultural non-cereal grain plant. Despite extensive genetic studies, the information on its mitochondrial genome is still lacking. Using long reads generated by single-molecule real-time technology coupled with circular consensus sequencing (CCS) protocol, we assembled the buckwheat mitochondrial genome and detected that its prevalent form consists of 10 circular chromosomes with a total length of 404 Kb. In order to confirm the presence of a multipartite structure, we developed a new targeted assembly tool capable of processing long reads. The mitogenome contains all genes typical for plant mitochondrial genomes and long inserts of plastid origin (~6.4% of the total mitogenome length). Using this new information, we characterized the genetic diversity of mitochondrial and plastid genomes in 11 buckwheat cultivars compared with the ancestral subspecies, F. esculentum ssp. ancestrale. We found it to be surprisingly low within cultivars: Only three to six variations in the mitogenome and one to two in the plastid genome. In contrast, the divergence with F. esculentum ssp. ancestrale is much higher: 220 positions differ in the mitochondrial genome and 159 in the plastid genome. The SNPs in the plastid genome are enriched in non-synonymous substitutions, in particular in the genes involved in photosynthesis: psbA, psbC, and psbH. This presumably reflects the selection for the increased photosynthesis efficiency as a part of the buckwheat breeding program.
Collapse
Affiliation(s)
- Maria D. Logacheva
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Mikhail I. Schelkunov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
- Skolkovo Institute of Science and Technology, 143026 Moscow, Russia
| | - Aleksey N. Fesenko
- Federal Scientific Center of Legumes and Groat Crops, 302502 Orel, Russia;
| | - Artem S. Kasianov
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
| | - Aleksey A. Penin
- Institute for Information Transmission Problems of the Russian Academy of Sciences, 127051 Moscow, Russia; (M.I.S.); (A.S.K.); (A.A.P.)
| |
Collapse
|
47
|
Bohra A, Saxena KB, Varshney RK, Saxena RK. Genomics-assisted breeding for pigeonpea improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1721-1737. [PMID: 32062675 DOI: 10.1007/s00122-020-03563-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 02/08/2020] [Indexed: 05/25/2023]
Abstract
The review outlines advances in pigeonpea genomics, breeding and seed delivery systems to achieve yield gains at farmers' field. Pigeonpea is a nutritious and stress-tolerant grain legume crop of tropical and subtropical regions. Decades of breeding efforts in pigeonpea have resulted in development of a number of high-yielding cultivars. Of late, the development of CMS-based hybrid technology has allowed the exploitation of heterosis for yield enhancement in this crop. Despite these positive developments, the actual on-farm yield of pigeonpea is still well below its potential productivity. Growing needs for high and sustainable pigeonpea yields motivate scientists to improve the breeding efficiency to deliver a steady stream of cultivars that will provide yield benefits under both ideal and stressed environments. To achieve this objective in the shortest possible time, it is imperative that various crop breeding activities are integrated with appropriate new genomics technologies. In this context, the last decade has seen a remarkable rise in the generation of important genomic resources such as genome-wide markers, high-throughput genotyping assays, saturated genome maps, marker/gene-trait associations, whole-genome sequence and germplasm resequencing data. In some cases, marker/gene-trait associations are being employed in pigeonpea breeding programs to improve the valuable yield and market-preferred traits. Embracing new breeding tools like genomic selection and speed breeding is likely to improve genetic gains. Breeding high-yielding pigeonpea cultivars with key adaptation traits also calls for a renewed focus on systematic selection and utilization of targeted genetic resources. Of equal importance is to overcome the difficulties being faced by seed industry to take the new cultivars to the doorstep of farmers.
Collapse
Affiliation(s)
- Abhishek Bohra
- ICAR-Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India.
| | - K B Saxena
- , 17, NMC Housing, Al Ain, Abu Dhabi, United Arab Emirates
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Rachit K Saxena
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
| |
Collapse
|
48
|
Liu Z, Liu Y, Sun Y, Yang A, Li F. Comparative Transcriptome Analysis Reveals the Potential Mechanism of Abortion in Tobacco sua-Cytoplasmic Male Sterility. Int J Mol Sci 2020; 21:E2445. [PMID: 32244798 PMCID: PMC7178165 DOI: 10.3390/ijms21072445] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/30/2022] Open
Abstract
sua-CMS (cytoplasmic male sterility) is the only male sterile system in tobacco breeding, but the mechanism of abortion is unclear. Cytological characteristics show that abortion in the sua-CMS line msZY occurs before the differentiation of sporogenous cells. In this study, a comparative transcriptomic analysis was conducted on flower buds at the abortion stage of msZY and its male fertile control ZY. A total of 462 differentially expressed genes were identified in msZY and ZY, which were enriched via protein processing in the endoplasmic reticulum (ER), oxidative phosphorylation, photosynthesis, and circadian rhythm-plant by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Most genes were downregulated in the ER stress pathway, heat-shock protein family, F1F0-ATPase encoding by the mitochondrial genome, and differentiation of stamens. Genes in the programmed cell death (PCD) pathway were upregulated in msZY. The transcriptome results were consistent with those of qRT-PCR. Ultrastructural and physiological analyses indicted active vacuole PCD and low ATP content in msZY young flower buds. We speculated that PCD and a deficiency in ATP synthesis are essential for the abortion of sua-CMS. This study reveals the potential mechanism of abortion of tobacco sua-CMS.
Collapse
Affiliation(s)
- Zhiwen Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Yanfang Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Yuhe Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Department of Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Department of Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China
| | - Fengxia Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Department of Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao 266101, China
| |
Collapse
|
49
|
What Does the Molecular Genetics of Different Types of Restorer-of-Fertility Genes Imply? PLANTS 2020; 9:plants9030361. [PMID: 32182978 PMCID: PMC7154926 DOI: 10.3390/plants9030361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022]
Abstract
Cytoplasmic male sterility (CMS) is a widely used trait for hybrid seed production. Although male sterility is caused by S cytoplasm (male-sterility inducing mitochondria), the action of S cytoplasm is suppressed by restorer-of-fertility (Rf), a nuclear gene. Hence, the genetics of Rf has attained particular interest among plant breeders. The genetic model posits Rf diversity in which an Rf specifically suppresses the cognate S cytoplasm. Molecular analysis of Rf loci in plants has identified various genes; however, pentatricopeptide repeat (PPR) protein (a specific type of RNA-binding protein) is so prominent as the Rf-gene product that Rfs have been categorized into two classes, PPR and non-PPR. In contrast, several shared features between PPR- and some non-PPR Rfs are apparent, suggesting the possibility of another grouping. Our present focus is to group Rfs by molecular genetic classes other than the presence of PPRs. We propose three categories that define partially overlapping groups of Rfs: association with post-transcriptional regulation of mitochondrial gene expression, resistance gene-like copy number variation at the locus, and lack of a direct link to S-orf (a mitochondrial ORF associated with CMS). These groups appear to reflect their own evolutionary background and their mechanism of conferring S cytoplasm specificity.
Collapse
|
50
|
Mapping of the New Fertility Restorer Gene Rf-PET2 Close to Rf1 on Linkage Group 13 in Sunflower ( Helianthus annuus L.). Genes (Basel) 2020; 11:genes11030269. [PMID: 32121545 PMCID: PMC7140827 DOI: 10.3390/genes11030269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 01/25/2023] Open
Abstract
The PET2-cytoplasm represents a well characterized new source of cytoplasmic male sterility (CMS) in sunflower. It is distinct from the PET1-cytoplasm, used worldwide for commercial hybrid breeding, although it was, as PET1, derived from an interspecific cross between Helianthus. petiolaris and H. annuus. Fertility restoration is essential for the use of CMS PET2 in sunflower hybrid breeding. Markers closely linked to the fertility restorer gene are needed to build up a pool of restorer lines. Fertility-restored F1-hybrids RHA 265(PET2) × IH-51 showed pollen viability of 98.2% ± 1.2, indicating a sporophytic mode of fertility restoration. Segregation analyses in the F2-population of the cross RHA 265(PET2) × IH-51 revealed that this cross segregated for one major restorer gene Rf-PET2. Bulked-segregant analyses investigating 256 amplified fragment length polymorphism (AFLP) primer combinations revealed a high degree of polymorphism in this cross. Using a subset of 24 AFLP markers, three sequence-tagged site (STS) markers and three microsatellite markers, Rf-PET2 could be mapped to the distal region of linkage group 13 between ORS1030 and ORS630. Three AFLP markers linked to Rf-PET2 were cloned and sequenced. Homology search against the sunflower genome sequence of HanXRQ v1r1 confirmed the physical location of Rf-PET2 close to the restorer gene Rf1 for CMS PET1. STS markers were mapped that can now be used for marker-assisted selection.
Collapse
|