1
|
Layton AT. A comparative modeling study of the mitochondrial function of the proximal tubule and thick ascending limb cells in the rat kidney. Am J Physiol Renal Physiol 2024; 326:F189-F201. [PMID: 37994410 DOI: 10.1152/ajprenal.00290.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023] Open
Abstract
To reabsorb >99% of the glomerular filtrate, the metabolic demand of the kidney is high. Interestingly, renal blood flow distribution exhibits marked inhomogeneity, with typical tissue oxygen tension (Po2) of 50-60 mmHg in the well-perfused cortex and 10-20 mmHg in the inner medulla. Cellular fluid composition and acidity also varies substantially. To understand how different renal epithelial cells adapt to their local environment, we have developed and applied computational models of mitochondrial function of proximal convoluted tubule cell (baseline Po2 = 50 mmHg, cytoplasmic pH = 7.20) and medullary thick ascending limb (mTAL) cell (baseline Po2 = 10 mmHg, cytoplasmic pH = 6.85). The models predict key cellular quantities, including ATP generation, P/O (phosphate/oxygen) ratio, proton motive force, electrical potential gradient, oxygen consumption, the redox state of key electron carriers, and ATP consumption. Model simulations predict that close to their respective baseline conditions, the proximal tubule and mTAL mitochondria exhibit qualitatively similar behaviors. Nonetheless, because the mTAL mitochondrion has adapted to a much lower Po2, it can sustain a sufficiently high ATP production at Po2 as low as 4-5 mmHg, whereas the proximal tubule mitochondria would not. Also, because the mTAL cytosol is already acidic under baseline conditions, the proton motive force (pmf) exhibits higher sensitivity to further acidification. Among the different pathways that lead to oxidative phosphorylation impairment, the models predict that both the proximal tubule and mTAL mitochondria are most sensitive to reductions in Complex III activity.NEW & NOTEWORTHY Tissue fluid composition varies substantially within the mammalian kidney. The renal cortex is well perfused and pH neutral, whereas some medullary regions are hypoxic and acidic. How do these environments affect the mitochondrial function of proximal convoluted tubule and medullary thick ascending limb cells, which reside in the cortex and medulla, respectively? This computational modeling study demonstrates that these mitochondria can adapt to their contrasting environments and exhibit different sensitivities to perturbations to local environments.
Collapse
Affiliation(s)
- Anita T Layton
- Department of Applied Mathematics, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Biology, Cheriton School of Computer Science, and School of Pharmacology, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
2
|
Patel SP, Michael FM, Gollihue JL, Brad Hubbard W, Sullivan PG, Rabchevsky AG. Delivery of mitoceuticals or respiratory competent mitochondria to sites of neurotrauma. Mitochondrion 2023; 68:10-14. [PMID: 36371072 PMCID: PMC9805511 DOI: 10.1016/j.mito.2022.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022]
Abstract
Herein, we review evidence that targeting mitochondrial dysfunction with 'mitoceuticals' is an effective neuroprotective strategy following neurotrauma, and that isolated exogenous mitochondria can be effectively transplanted into host spinal cord parenchyma to increase overall cellular metabolism. We further discuss control measures to ensure greatest potential for mitochondrial transfer, notably using erodible thermogelling hydrogels to deliver respiratory competent mitochondria to the injured spinal cord.
Collapse
Affiliation(s)
- Samir P Patel
- University of Kentucky, Spinal Cord & Brain Injury Research Center, United States; Departments of Physiology & Neuroscience, College of Medicine, Lexington, KY 40536-0509, United States
| | - Felicia M Michael
- University of Kentucky, Spinal Cord & Brain Injury Research Center, United States; Departments of Physiology & Neuroscience, College of Medicine, Lexington, KY 40536-0509, United States
| | - Jenna L Gollihue
- Sanders-Brown Center on Aging, College of Medicine, Lexington, KY 40536-0230, United States
| | - W Brad Hubbard
- University of Kentucky, Spinal Cord & Brain Injury Research Center, United States; Lexington VA Healthcare System, Lexington, KY 40502, United States
| | - Patrick G Sullivan
- Departments of Physiology & Neuroscience, College of Medicine, Lexington, KY 40536-0509, United States; Lexington VA Healthcare System, Lexington, KY 40502, United States
| | - Alexander G Rabchevsky
- University of Kentucky, Spinal Cord & Brain Injury Research Center, United States; Departments of Physiology & Neuroscience, College of Medicine, Lexington, KY 40536-0509, United States; Lexington VA Healthcare System, Lexington, KY 40502, United States.
| |
Collapse
|
3
|
Nicholls DG. Mitochondrial proton leaks and uncoupling proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2021; 1862:148428. [PMID: 33798544 DOI: 10.1016/j.bbabio.2021.148428] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/15/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023]
Abstract
Non-shivering thermogenesis in brown adipose tissue is mediated by uncoupling protein 1 (UCP1), which provides a carefully regulated proton re-entry pathway across the mitochondrial inner membrane operating in parallel to the ATP synthase and allowing respiration, and hence thermogenesis, to be released from the constraints of respiratory control. In the 40 years since UCP1 was first described, an extensive, and frequently contradictory, literature has accumulated, focused on the acute physiological regulation of the protein by fatty acids, purine nucleotides and possible additional factors. The purpose of this review is to examine, in detail, the experimental evidence underlying these proposed mechanisms. Emphasis will be placed on the methodologies employed and their relation to the physiological constraints under which the protein functions in the intact cell. The nature of the endogenous, UCP1-independent, proton leak will also be discussed. Finally, the troubled history of the putative novel uncoupling proteins, UCP2 and UCP3, will be evaluated.
Collapse
|
4
|
Rigoulet M, Bouchez CL, Paumard P, Ransac S, Cuvellier S, Duvezin-Caubet S, Mazat JP, Devin A. Cell energy metabolism: An update. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148276. [PMID: 32717222 DOI: 10.1016/j.bbabio.2020.148276] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/14/2022]
Abstract
In living cells, growth is the result of coupling between substrate catabolism and multiple metabolic processes that take place during net biomass formation and maintenance processes. During growth, both ATP/ADP and NADH/NAD+ molecules play a key role. Cell energy metabolism hence refers to metabolic pathways involved in ATP synthesis linked to NADH turnover. Two main pathways are thus involved in cell energy metabolism: glycolysis/fermentation and oxidative phosphorylation. Glycolysis and mitochondrial oxidative phosphorylation are intertwined through thermodynamic and kinetic constraints that are reviewed herein. Further, our current knowledge of short-term and long term regulation of cell energy metabolism will be reviewed using examples such as the Crabtree and the Warburg effect.
Collapse
Affiliation(s)
- M Rigoulet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - C L Bouchez
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - P Paumard
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Ransac
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Cuvellier
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - S Duvezin-Caubet
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - J P Mazat
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France
| | - A Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France; Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, F-33000 Bordeaux, France.
| |
Collapse
|
5
|
Edwards A, Palm F, Layton AT. A model of mitochondrial O 2 consumption and ATP generation in rat proximal tubule cells. Am J Physiol Renal Physiol 2020; 318:F248-F259. [PMID: 31790302 PMCID: PMC6985826 DOI: 10.1152/ajprenal.00330.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022] Open
Abstract
Oxygen tension in the kidney is mostly determined by O2 consumption (Qo2), which is, in turn, closely linked to tubular Na+ reabsorption. The objective of the present study was to develop a model of mitochondrial function in the proximal tubule (PT) cells of the rat renal cortex to gain more insight into the coupling between Qo2, ATP formation (GATP), ATP hydrolysis (QATP), and Na+ transport in the PT. The present model correctly predicts in vitro and in vivo measurements of Qo2, GATP, and ATP and Pi concentrations in PT cells. Our simulations suggest that O2 levels are not rate limiting in the proximal convoluted tubule, absent large metabolic perturbations. The model predicts that the rate of ATP hydrolysis and cytoplasmic pH each substantially regulate the GATP-to-Qo2 ratio, a key determinant of the number of Na+ moles actively reabsorbed per mole of O2 consumed. An isolated increase in QATP or in cytoplasmic pH raises the GATP-to-Qo2 ratio. Thus, variations in Na+ reabsorption and pH along the PT may, per se, generate axial heterogeneities in the efficiency of mitochondrial metabolism and Na+ transport. Our results also indicate that the GATP-to-Qo2 ratio is strongly impacted not only by H+ leak permeability, which reflects mitochondrial uncoupling, but also by K+ leak pathways. Simulations suggest that the negative impact of increased uncoupling in the diabetic kidney on mitochondrial metabolic efficiency is partly counterbalanced by increased rates of Na+ transport and ATP consumption. This model provides a framework to investigate the role of mitochondrial dysfunction in acute and chronic renal diseases.
Collapse
Affiliation(s)
- Aurélie Edwards
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Fredrik Palm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anita T Layton
- Departments of Mathematics, Biomedical Engineering, and Medicine, Duke University, Durham, North Carolina
- Departments of Applied Mathematics and Biology, School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Single organelle analysis to characterize mitochondrial function and crosstalk during viral infection. Sci Rep 2019; 9:8492. [PMID: 31186476 PMCID: PMC6560178 DOI: 10.1038/s41598-019-44922-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/23/2019] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are key for cellular metabolism and signalling processes during viral infection. We report a methodology to analyse mitochondrial properties at the single-organelle level during viral infection using a recombinant adenovirus coding for a mitochondrial tracer protein for tagging and detection by multispectral flow cytometry. Resolution at the level of tagged individual mitochondria revealed changes in mitochondrial size, membrane potential and displayed a fragile phenotype during viral infection of cells. Thus, single-organelle and multi-parameter resolution allows to explore altered energy metabolism and antiviral defence by tagged mitochondria selectively in virus-infected cells and will be instrumental to identify viral immune escape and to develop and monitor novel mitochondrial-targeted therapies.
Collapse
|
7
|
Einer C, Leitzinger C, Lichtmannegger J, Eberhagen C, Rieder T, Borchard S, Wimmer R, Denk G, Popper B, Neff F, Polishchuk EV, Polishchuk RS, Hauck SM, von Toerne C, Müller JC, Karst U, Baral BS, DiSpirito AA, Kremer AE, Semrau J, Weiss KH, Hohenester S, Zischka H. A High-Calorie Diet Aggravates Mitochondrial Dysfunction and Triggers Severe Liver Damage in Wilson Disease Rats. Cell Mol Gastroenterol Hepatol 2018; 7:571-596. [PMID: 30586623 PMCID: PMC6407159 DOI: 10.1016/j.jcmgh.2018.12.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS In Wilson disease, ATP7B mutations impair copper excretion into bile. Hepatic copper accumulation may induce mild to moderate chronic liver damage or even acute liver failure. Etiologic factors for this heterogeneous phenotype remain enigmatic. Liver steatosis is a frequent finding in Wilson disease patients, suggesting that impaired copper homeostasis is linked with liver steatosis. Hepatic mitochondrial function is affected negatively both by copper overload and steatosis. Therefore, we addressed the question of whether a steatosis-promoting high-calorie diet aggravates liver damage in Wilson disease via amplified mitochondrial damage. METHODS Control Atp7b+/- and Wilson disease Atp7b-/- rats were fed either a high-calorie diet (HCD) or a normal diet. Copper chelation using the high-affinity peptide methanobactin was used in HCD-fed Atp7b-/- rats to test for therapeutic reversal of mitochondrial copper damage. RESULTS In comparison with a normal diet, HCD feeding of Atp7b-/- rats resulted in a markedly earlier onset of clinically apparent hepatic injury. Strongly increased mitochondrial copper accumulation was observed in HCD-fed Atp7b-/- rats, correlating with severe liver injury. Mitochondria presented with massive structural damage, increased H2O2 emergence, and dysfunctional adenosine triphosphate production. Hepatocellular injury presumably was augmented as a result of oxidative stress. Reduction of mitochondrial copper by methanobactin significantly reduced mitochondrial impairment and ameliorated liver damage. CONCLUSIONS A high-calorie diet severely aggravates hepatic mitochondrial and hepatocellular damage in Wilson disease rats, causing an earlier onset of the disease and enhanced disease progression.
Collapse
Affiliation(s)
- Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christin Leitzinger
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Josef Lichtmannegger
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tamara Rieder
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ralf Wimmer
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gerald Denk
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Bastian Popper
- Department of Anatomy and Cell Biology, Biomedical Center, Ludwig-Maximilians-University, Planegg-Martinsried, Germany; Core Facility Animal Models, Biomedical Center, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | | | | | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Bipin S Baral
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa
| | - Andreas E Kremer
- Department of Medicine I, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Jeremy Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan
| | - Karl Heinz Weiss
- Department of Gastroenterology, Internal Medicine IV, University Hospital Heidelberg, Heidelberg, Germany
| | - Simon Hohenester
- Department of Medicine II, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University Munich, Munich, Germany.
| |
Collapse
|
8
|
Abstract
The spatial density of mitochondria was studied by thin-section electron microscopy in
smooth muscles of bladder, iris and gut in mice, rats, guinea-pigs and sheep. Morphometric
data included areas of muscle cell profiles (~6,000 muscle cells were measured) and areas
of their mitochondria (more than three times as many). The visual method delivers accurate
estimates of the extent of the chondrioma (the ensemble of mitochondria in a cell),
measuring all and only the mitochondria in each muscle cell and no other cells. The
digital records obtained can be used again for checks and new searches. Spatial density of
mitochondria varies between about 2 and 10% in different muscles in different species. In
contrast, there is consistency of mitochondrial density within a given muscle in a given
species. For each muscle in each species there is a characteristic mitochondrial density
with modest variation between experiments. On the basis of data from serial sections in
the rat detrusor muscle, mitochondrial density varies very little between the muscle
cells, each cell having a value close to that for the whole muscle. Mitochondrial density
is different in a given muscle, e.g., ileal circular muscle, from the four mammalian
species, with highest values in mouse and lowest in sheep; in mice the mitochondrial
density is nearly three time higher that in sheep. In a given species there are
characteristic variations between different muscles. For example, the bladder detrusor
muscle has markedly fewer mitochondria than the ileum, and the iris has markedly more.
Collapse
|
9
|
Zischka H, Einer C. Mitochondrial copper homeostasis and its derailment in Wilson disease. Int J Biochem Cell Biol 2018; 102:71-75. [PMID: 29997057 DOI: 10.1016/j.biocel.2018.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 01/07/2023]
Abstract
In mitochondria, copper is a Janus-faced trace element. While it is the essential cofactor of the mitochondrial cytochrome c oxidase, a surplus of copper can be highly detrimental to these organelles. On the one hand, mitochondria are strictly dependent on adequate copper supply for proper respiratory function, and the molecular mechanisms for metalation of the cytochrome c oxidase have been largely characterized. On the other hand, copper overload impairs mitochondria and uncertainties exist concerning the molecular mechanisms for mitochondrial metal uptake, storage and release. The latter issue is of fundamental importance in Wilson disease, a genetic disease characterized by dysfunctional copper excretion from the liver. Prime consequences of the progressive copper accumulation in hepatocytes are increasing mitochondrial biophysical and biochemical deficits. Focusing on this two-sided aspect of mitochondrial copper, we review mitochondrial copper homeostasis but also the impact of excessive mitochondrial copper in Wilson disease.
Collapse
Affiliation(s)
- Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany; Institute of Toxicology and Environmental Hygiene, Technical University of Munich, 80802 Munich, Germany.
| | - Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
10
|
Ingold I, Berndt C, Schmitt S, Doll S, Poschmann G, Buday K, Roveri A, Peng X, Porto Freitas F, Seibt T, Mehr L, Aichler M, Walch A, Lamp D, Jastroch M, Miyamoto S, Wurst W, Ursini F, Arnér ES, Fradejas-Villar N, Schweizer U, Zischka H, Friedmann Angeli JP, Conrad M. Selenium Utilization by GPX4 Is Required to Prevent Hydroperoxide-Induced Ferroptosis. Cell 2018; 172:409-422.e21. [DOI: 10.1016/j.cell.2017.11.048] [Citation(s) in RCA: 1090] [Impact Index Per Article: 155.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/16/2017] [Accepted: 11/28/2017] [Indexed: 01/11/2023]
|
11
|
Einer C, Hohenester S, Wimmer R, Wottke L, Artmann R, Schulz S, Gosmann C, Simmons A, Leitzinger C, Eberhagen C, Borchard S, Schmitt S, Hauck SM, von Toerne C, Jastroch M, Walheim E, Rust C, Gerbes AL, Popper B, Mayr D, Schnurr M, Vollmar AM, Denk G, Zischka H. Data on chow, liver tissue and mitochondrial fatty acid compositions as well as mitochondrial proteome changes after feeding mice a western diet for 6-24 weeks. Data Brief 2017; 15:163-169. [PMID: 29034285 PMCID: PMC5633826 DOI: 10.1016/j.dib.2017.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/12/2017] [Indexed: 10/26/2022] Open
Abstract
The data presented in this article describe the fatty acid composition of chow, liver tissue and isolated liver mitochondria from mice fed for 6-24 weeks with a high caloric western diet (WD) in comparison to control diet (normal diet, ND). The fatty acid composition was measured via gas chromatography flame ionization detection (GC-FID). Moreover, WD-induced mitochondrial protein changes are presented in this work and were analyzed by mass spectrometry (LC-MS/MS). For further interpretation and discussion of the presented data please refer to the research article entitled "Mitochondrial adaptation in steatotic mice" (Einer et al., 2017) [1].
Collapse
Affiliation(s)
- Claudia Einer
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Simon Hohenester
- Department of Medicine II - Grosshadern, Liver Center Munich, LMU Munich, 81377 Munich, Germany
| | - Ralf Wimmer
- Department of Medicine II - Grosshadern, Liver Center Munich, LMU Munich, 81377 Munich, Germany
| | - Lena Wottke
- Department of Medicine II - Grosshadern, Liver Center Munich, LMU Munich, 81377 Munich, Germany
| | - Renate Artmann
- Department of Medicine II - Grosshadern, Liver Center Munich, LMU Munich, 81377 Munich, Germany
| | - Sabine Schulz
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Christian Gosmann
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Alisha Simmons
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Christin Leitzinger
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Sabine Borchard
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Sabine Schmitt
- Institute of Toxicology and Environmental Hygiene, Technical University of Munich, 80802 Munich, Germany
| | - Stefanie M. Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Martin Jastroch
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Ellen Walheim
- Institute of Diabetes and Obesity, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Christian Rust
- Department of Medicine I, Krankenhaus Barmherzige Brüder, 80639 Munich, Germany
| | - Alexander L. Gerbes
- Department of Medicine II - Grosshadern, Liver Center Munich, LMU Munich, 81377 Munich, Germany
| | - Bastian Popper
- Biomedical Center, Department of Anatomy and Cell biology, LMU Munich, 82152 Planegg, Martinsried,, Germany
| | - Doris Mayr
- Department of Pathology, LMU Munich, 80337 Munich, Germany
| | - Max Schnurr
- Division of Clinical Pharmacology & Center for Integrated Protein Science Munich (CIPSM), Klinikum der Universität München, 80337 Munich, Germany
| | - Angelika M. Vollmar
- Department of Pharmacy - Center for Drug Research, Pharmaceutical Biology, LMU Munich, 81377 Munich, Germany
| | - Gerald Denk
- Department of Medicine II - Grosshadern, Liver Center Munich, LMU Munich, 81377 Munich, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University of Munich, 80802 Munich, Germany
| |
Collapse
|
12
|
Mitochondrial adaptation in steatotic mice. Mitochondrion 2017; 40:1-12. [PMID: 28935446 DOI: 10.1016/j.mito.2017.08.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 07/19/2017] [Accepted: 08/31/2017] [Indexed: 12/13/2022]
Abstract
Western lifestyle-associated malnutrition causes steatosis that may progress to liver inflammation and mitochondrial dysfunction has been suggested as a key factor in promoting this disease. Here we have molecularly, biochemically and biophysically analyzed mitochondria from steatotic wild type and immune-compromised mice fed a Western diet (WD) - enriched in saturated fatty acids (SFAs). WD-mitochondria demonstrated lipidomic changes, a decreased mitochondrial ATP production capacity and a significant sensitivity to calcium. These changes preceded hepatocyte damage and were not associated with enhanced ROS production. Thus, WD-mitochondria do not promote steatohepatitis per se, but demonstrate bioenergetic deficits and increased sensitivity to stress signals.
Collapse
|
13
|
Seyfried TN, Yu G, Maroon JC, D'Agostino DP. Press-pulse: a novel therapeutic strategy for the metabolic management of cancer. Nutr Metab (Lond) 2017; 14:19. [PMID: 28250801 PMCID: PMC5324220 DOI: 10.1186/s12986-017-0178-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/17/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A shift from respiration to fermentation is a common metabolic hallmark of cancer cells. As a result, glucose and glutamine become the prime fuels for driving the dysregulated growth of tumors. The simultaneous occurrence of "Press-Pulse" disturbances was considered the mechanism responsible for reduction of organic populations during prior evolutionary epochs. Press disturbances produce chronic stress, while pulse disturbances produce acute stress on populations. It was only when both disturbances coincide that population reduction occurred. METHODS This general concept can be applied to the management of cancer by creating chronic metabolic stresses on tumor cell energy metabolism (press disturbance) that are coupled to a series of acute metabolic stressors that restrict glucose and glutamine availability while also stimulating cancer-specific oxidative stress (pulse disturbances). The elevation of non-fermentable ketone bodies protect normal cells from energy stress while further enhancing energy stress in tumor cells that lack the metabolic flexibility to use ketones as an efficient energy source. Mitochondrial abnormalities and genetic mutations make tumor cells vulnerable metabolic stress. RESULTS The press-pulse therapeutic strategy for cancer management is illustrated with calorie restricted ketogenic diets (KD-R) used together with drugs and procedures that create both chronic and intermittent acute stress on tumor cell energy metabolism, while protecting and enhancing the energy metabolism of normal cells. CONCLUSIONS Optimization of dosing, timing, and scheduling of the press-pulse therapeutic strategy will facilitate the eradication of tumor cells with minimal patient toxicity. This therapeutic strategy can be used as a framework for the design of clinical trials for the non-toxic management of most cancers.
Collapse
Affiliation(s)
| | - George Yu
- George Washington University Medical Center Washington DC, and Aegis Medical & Research Associates Annapolis, Maryland, USA
| | - Joseph C Maroon
- Department of Neurosurgery, University of Pittsburgh Medical Center, Suite 5C, 200 Lothrop St, Pittsburgh, PA USA
| | - Dominic P D'Agostino
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida USA
| |
Collapse
|
14
|
Maximchik PV, Kulikov AV, Zhivotovsky BD, Gogvadze VG. Cellular energetics as a target for tumor cell elimination. BIOCHEMISTRY (MOSCOW) 2016; 81:65-79. [DOI: 10.1134/s0006297916020012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Kempf SJ, Sepe S, von Toerne C, Janik D, Neff F, Hauck SM, Atkinson MJ, Mastroberardino PG, Tapio S. Neonatal Irradiation Leads to Persistent Proteome Alterations Involved in Synaptic Plasticity in the Mouse Hippocampus and Cortex. J Proteome Res 2015; 14:4674-86. [PMID: 26420666 DOI: 10.1021/acs.jproteome.5b00564] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recent epidemiological data indicate that radiation doses as low as those used in computer tomography may result in long-term neurocognitive side effects. The aim of this study was to elucidate long-term molecular alterations related to memory formation in the brain after low and moderate doses of γ radiation. Female C57BL/6J mice were irradiated on postnatal day 10 with total body doses of 0.1, 0.5, or 2.0 Gy; the control group was sham-irradiated. The proteome analysis of hippocampus, cortex, and synaptosomes isolated from these brain regions indicated changes in ephrin-related, RhoGDI, and axonal guidance signaling. Immunoblotting and miRNA-quantification demonstrated an imbalance in the synapse morphology-related Rac1-Cofilin pathway and long-term potentiation-related cAMP response element-binding protein (CREB) signaling. Proteome profiling also showed impaired oxidative phosphorylation, especially in the synaptic mitochondria. This was accompanied by an early (4 weeks) reduction of mitochondrial respiration capacity in the hippocampus. Although the respiratory capacity was restored by 24 weeks, the number of deregulated mitochondrial complex proteins was increased at this time. All observed changes were significant at doses of 0.5 and 2.0 Gy but not at 0.1 Gy. This study strongly suggests that ionizing radiation at the neonatal state triggers persistent proteomic alterations associated with synaptic impairment.
Collapse
Affiliation(s)
| | - Sara Sepe
- Department of Genetics, Erasmus Medical Center , 3015 CE Rotterdam, The Netherlands
| | | | | | | | | | - Michael J Atkinson
- Chair of Radiation Biology, Technical University Munich , 80333 Munich, Germany
| | | | | |
Collapse
|
16
|
A protocol for the parallel isolation of intact mitochondria from rat liver, kidney, heart, and brain. Methods Mol Biol 2015; 1295:75-86. [PMID: 25820715 DOI: 10.1007/978-1-4939-2550-6_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Mitochondria are key organelles for cellular energy production and cell death decisions. Consequently, a plethora of conditions which are toxic to cells are known to directly attack these organelles. However, mitochondria originating from different tissues differ in their sensitivity to toxic insults. Thus, in order to predict the potential organ-specific toxicity of a given drug or pathological condition at the mitochondrial level, test settings are needed that directly compare the responses and vulnerabilities of mitochondria from different organs. As a prerequisite for such test strategies, we provide here a robust, prompt, and easy-to-follow step-by-step protocol to simultaneously isolate functional and intact mitochondria from rat liver, kidney, heart, and brain. This isolation procedure ensures mitochondrial preparations of comparable purity and reproducible quantities which can be subsequently analyzed for organ-specific mitochondrial toxicity.
Collapse
|
17
|
Schmitt S, Eberhagen C, Weber S, Aichler M, Zischka H. Isolation of mitochondria from cultured cells and liver tissue biopsies for molecular and biochemical analyses. Methods Mol Biol 2015; 1295:87-97. [PMID: 25820716 DOI: 10.1007/978-1-4939-2550-6_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We recently reported a new method to isolate functionally intact mitochondria from cell culture and small tissue samples (Schmitt et al., Anal Biochem 443(1):66-74, 2013). This method comprises a semi-automated cell rupture, termed pump controlled cell rupture system (PCC), which can be precisely adjusted to the specific cellular source of isolation and which can be tightly controlled (Schmitt et al., Anal Biochem 443(1):66-74, 2013). Here we provide a detailed hands-on protocol of this PCC method which results in an efficient cell breakage but preserving the mitochondrial integrity. Upon subsequent purification steps, the obtained mitochondrial fraction meets the quality and purity required for molecular analyses, e.g. proteomic comparisons, as well as for biochemical analyses, e.g. determination of diverse enzymatic activities.
Collapse
Affiliation(s)
- Sabine Schmitt
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, Neuherberg, 85764, Germany
| | | | | | | | | |
Collapse
|