1
|
Kubat GB, Kartal Y, Atalay O, Ulger O, Ekinci O, Celik E, Safali M, Urkan M, Karahan S, Ozler M, Cicek Z, Budak MT. Investigation of the effect of isolated mitochondria transplantation on renal ischemia-reperfusion injury in rats. Toxicol Appl Pharmacol 2021; 433:115780. [PMID: 34756876 DOI: 10.1016/j.taap.2021.115780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022]
Abstract
Ischemia/Reperfusion (I/R) injury is clinically important in many surgical practice including kidney transplantation. It is known that mitochondria have a key role in the intracellular and extracellular signaling pathways of ischemia and reperfusion injury. In this respect, we pointed to explore the probable effects of isolated mitochondria transplantation from MSCs (mesenchymal stem cells), to alleviate ischemia/reperfusion-induced renal injury. Experiments were held on the 48 male Sprague Dawley rats. Groups were divided as Control (C1), I/R-Control (C2), Vehicle-1 (V1), Vehicle-2 (V2), Transplantation-1 (T1) and Transplantation-2 (T2) group. Unilaterally nephrectomy was performed in all groups. In the groups except the control, the left kidneys ischemized for 45 min and then reperfusion was carried out. According to the study groups, isolated mitochondria or vehicle infused into the renal cortex and rats were monitored for 48 h. Following that mentioned procedure, animals were sacrificed and biological samples were taken for physiological, histological and biochemical examinations. The results of present study show that mitochondrial transplantation promoted proliferation and regeneration of tubular cells after renal injury. Moreover, mitochondrial transplantation reduced mitochondrial dynamics-DRP-1 fission protein of tubular cells and reversed renal deficits. Mitochondrial transplantation diminished apoptotic markers including TUNEL and Caspase-3 levels in injured renal cells. Our results provide a direct link between mitochondria dysfunction and ischemia/reperfusion-induced renal injury and suggest a therapeutic effect of transplanting isolated mitochondria obtained from MSCs against renal injury.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Exercise and Sports Physiology, Hacettepe University, Ankara, Turkey; Department of Pathology, Gulhane Training and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Yasemin Kartal
- Department of Physiology, Hacettepe University, Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Hacettepe University, Ankara, Turkey
| | - Oner Ulger
- Department of Physiology, Health Sciences University, Ankara, Turkey
| | - Ozgur Ekinci
- Department of Pathology, Gazi University, Ankara, Turkey
| | - Ertugrul Celik
- Department of Pathology, Gulhane Training and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Mukerrem Safali
- Department of Pathology, Gulhane Training and Research Hospital, Health Sciences University, Ankara, Turkey
| | - Murat Urkan
- Department of General Surgery Service, Training and Research Hospital, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Sevilay Karahan
- Department of Biostatistics, Hacettepe University, Ankara, Turkey
| | - Mehmet Ozler
- Department of Physiology, Health Sciences University, Ankara, Turkey
| | - Zehra Cicek
- Department of Physiology, Health Sciences University, Ankara, Turkey
| | | |
Collapse
|
2
|
Zhang L, Gan X, He Y, Zhu Z, Zhu J, Yu H. Drp1-dependent mitochondrial fission mediates osteogenic dysfunction in inflammation through elevated production of reactive oxygen species. PLoS One 2017; 12:e0175262. [PMID: 28388678 PMCID: PMC5384744 DOI: 10.1371/journal.pone.0175262] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/23/2017] [Indexed: 02/05/2023] Open
Abstract
Although previous studies have implicated pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), to be detrimental for osteogenic activity, the related regulatory mechanisms are not yet fully validated. Since mitochondria host several essential metabolic processes and play a pivotal role in cellular functions, whether and how mitochondrial function contributes to inflammation-induced bone destruction needs further exploration. Our findings revealed that TNF-α impaired osteoblast function, including decreased mRNA levels of osteogenic markers, suppressed ALP expression and activity, and compromised cellular viability. Moreover, increased reactive oxygen species (ROS)-mediated oxidative stress in the TNF-α-treated group enhanced excessive mitochondrial fragmentation and disrupted mitochondrial function. However, treatment with antioxidant N-acetyl cysteine (NAC) or mitochondrial division inhibitor Mdivi-1 protected the cells from these adverse phenomena. These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the osteogenic dysfunction during inflammation, indicating that this pathway may be a target for the development of new therapeutic approaches for the prevention and treatment of inflammation-induced bone destruction.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueqi Gan
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuting He
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoli Zhu
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junfei Zhu
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
3
|
Mitochondrial transplantation: From animal models to clinical use in humans. Mitochondrion 2017; 34:127-134. [PMID: 28342934 DOI: 10.1016/j.mito.2017.03.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/06/2017] [Accepted: 03/16/2017] [Indexed: 12/21/2022]
Abstract
Mitochondrial transplantation is a novel therapeutic intervention to treat ischemia/reperfusion related disorders. The method for mitochondrial transplantation is simple and rapid and can be delivered to the end organ either by direct injection or vascular infusion. In this review, we provide mechanistic and histological studies in large animal models and present data to show clinical efficacy in human patients.
Collapse
|