1
|
Poncet M, Féménia M, Pierre C, Charles M, Capitan A, Boulling A, Rocha D. Nuclear sequences of mitochondrial origin in domestic yak. Sci Rep 2024; 14:10217. [PMID: 38702416 PMCID: PMC11068780 DOI: 10.1038/s41598-024-61147-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/02/2024] [Indexed: 05/06/2024] Open
Abstract
Mitochondrial DNA sequences are frequently transferred into the nuclear genome, generating nuclear mitochondrial DNA sequences (NUMTs). Here, we analysed, for the first time, NUMTs in the domestic yak genome. We obtained 499 alignment matches covering 340.2 kbp of the yak nuclear genome. After a merging step, we identified 167 NUMT regions with a total length of ~ 503 kbp, representing 0.02% of the nuclear genome. We discovered copies of all mitochondrial regions and found that most NUMT regions are intergenic or intronic and mostly untranscribed. 98 different NUMT regions from domestic yak showed high homology with cow and/or wild yak genomes, suggesting selection or hybridization between domestic/wild yak and cow. To rule out the possibility that the identified NUMTs could be artifacts of the domestic yak genome assembly, we validated experimentally five NUMT regions by PCR amplification. As NUMT regions show high similarity to the mitochondrial genome can potentially pose a risk to domestic yak DNA mitochondrial studies, special care is therefore needed to select primers for PCR amplification of mitochondrial DNA sequences.
Collapse
Affiliation(s)
- Mélissa Poncet
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Maureen Féménia
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Clémence Pierre
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Mathieu Charles
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- INRAE, SIGENAE, 78350, Jouy-en-Josas, France
| | - Aurélien Capitan
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Arnaud Boulling
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Dominique Rocha
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
2
|
Triant DA, Pearson WR. Comparison of detection methods and genome quality when quantifying nuclear mitochondrial insertions in vertebrate genomes. Front Genet 2022; 13:984513. [PMID: 36482890 PMCID: PMC9723244 DOI: 10.3389/fgene.2022.984513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/03/2022] [Indexed: 01/27/2024] Open
Abstract
The integration of mitochondrial genome fragments into the nuclear genome is well documented, and the transfer of these mitochondrial nuclear pseudogenes (numts) is thought to be an ongoing evolutionary process. With the increasing number of eukaryotic genomes available, genome-wide distributions of numts are often surveyed. However, inconsistencies in genome quality can reduce the accuracy of numt estimates, and methods used for identification can be complicated by the diverse sizes and ages of numts. Numts have been previously characterized in rodent genomes and it was postulated that they might be more prevalent in a group of voles with rapidly evolving karyotypes. Here, we examine 37 rodent genomes, and an additional 26 vertebrate genomes, while also considering numt detection methods. We identify numts using DNA:DNA and protein:translated-DNA similarity searches and compare numt distributions among rodent and vertebrate taxa to assess whether some groups are more susceptible to transfer. A combination of protein sequence comparisons (protein:translated-DNA) and BLASTN genomic DNA searches detect 50% more numts than genomic DNA:DNA searches alone. In addition, higher-quality RefSeq genomes produce lower estimates of numts than GenBank genomes, suggesting that lower quality genome assemblies can overestimate numts abundance. Phylogenetic analysis shows that mitochondrial transfers are not associated with karyotypic diversity among rodents. Surprisingly, we did not find a strong correlation between numt counts and genome size. Estimates using DNA: DNA analyses can underestimate the amount of mitochondrial DNA that is transferred to the nucleus.
Collapse
Affiliation(s)
- Deborah A. Triant
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | | |
Collapse
|
3
|
Unraveling mitochondrial piRNAs in mouse embryonic gonadal cells. Sci Rep 2022; 12:10730. [PMID: 35750721 PMCID: PMC9232517 DOI: 10.1038/s41598-022-14414-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/18/2022] [Indexed: 11/08/2022] Open
Abstract
Although mitochondria are widely studied organelles, the recent interest in the role of mitochondrial small noncoding RNAs (sncRNAs), miRNAs, and more recently, piRNAs, is providing new functional perspectives in germ cell development and differentiation. piRNAs (PIWI-interacting RNAs) are single-stranded sncRNAs of mostly about 20-35 nucleotides, generated from the processing of pre-piRNAs. We leverage next-generation sequencing data obtained from mouse primordial germ cells and somatic cells purified from early-differentiating embryonic ovaries and testis from 11.5 to 13.5 days postcoitum. Using bioinformatic tools, we elucidate (i) the origins of piRNAs as transcribed from mitochondrial DNA fragments inserted in the nucleus or from the mitochondrial genome; (ii) their levels of expression; and (iii) their potential roles, as well as their association with genomic regions encoding other sncRNAs (such as tRNAs and rRNAs) and the mitochondrial regulatory region (D-loop). Finally, our results suggest how nucleo-mitochondrial communication, both anterograde and retrograde signaling, may be mediated by mitochondria-associated piRNAs.
Collapse
|
4
|
The formation and biological characterization of two allotriploid fish derived from interploid crosses. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
5
|
Bushel PR, Ward J, Burkholder A, Li J, Anchang B. Mitochondrial-nuclear epistasis underlying phenotypic variation in breast cancer pathology. Sci Rep 2022; 12:1393. [PMID: 35082309 PMCID: PMC8791930 DOI: 10.1038/s41598-022-05148-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
The interplay between genes harboring single nucleotide polymorphisms (SNPs) is vital to better understand underlying contributions to the etiology of breast cancer. Much attention has been paid to epistasis between nuclear genes or mutations in the mitochondrial genome. However, there is limited understanding about the epistatic effects of genetic variants in the nuclear and mitochondrial genomes jointly on breast cancer. We tested the interaction of germline SNPs in the mitochondrial (mtSNPs) and nuclear (nuSNPs) genomes of female breast cancer patients in The Cancer Genome Atlas (TCGA) for association with morphological features extracted from hematoxylin and eosin (H&E)-stained pathology images. We identified 115 significant (q-value < 0.05) mito-nuclear interactions that increased nuclei size by as much as 12%. One interaction between nuSNP rs17320521 in an intron of the WSC Domain Containing 2 (WSCD2) gene and mtSNP rs869096886, a synonymous variant mapped to the mitochondrially-encoded NADH dehydrogenase 4 (MT-ND4) gene, was confirmed in an independent breast cancer data set from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC). None of the 10 mito-nuclear interactions identified from non-diseased female breast tissues from the Genotype-Expression (GTEx) project resulted in an increase in nuclei size. Comparisons of gene expression data from the TCGA breast cancer patients with the genotype homozygous for the minor alleles of the SNPs in WSCD2 and MT-ND4 versus the other genotypes revealed core transcriptional regulator interactions and an association with insulin. Finally, a Cox proportional hazards ratio = 1.7 (C.I. 0.98-2.9, p-value = 0.042) and Kaplan-Meier plot suggest that the TCGA female breast cancer patients with low gene expression of WSCD2 coupled with large nuclei have an increased risk of mortality. The intergenomic dependency between the two variants may constitute an inherent susceptibility of a more severe form of breast cancer and points to genetic targets for further investigation of additional determinants of the disease.
Collapse
Affiliation(s)
- Pierre R Bushel
- Massive Genome Informatics Group, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC, 27709, USA.
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA.
| | - James Ward
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
- Kelly Government Solutions, Research Triangle Park, NC, 27709, USA
| | - Adam Burkholder
- Office of Environmental Science Cyberinfrastructure, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Jianying Li
- Massive Genome Informatics Group, National Institute of Environmental Health Sciences, 111 T.W. Alexander Drive, P.O. Box 12233, Research Triangle Park, NC, 27709, USA
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
- Kelly Government Solutions, Research Triangle Park, NC, 27709, USA
| | - Benedict Anchang
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| |
Collapse
|
6
|
Féménia M, Charles M, Boulling A, Rocha D. Identification and characterisation of mitochondrial sequences integrated into the ovine nuclear genome. Anim Genet 2021; 52:556-559. [PMID: 34060107 DOI: 10.1111/age.13096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 11/29/2022]
Abstract
Mitochondrial DNA sequences are frequently transferred into the nuclear genome, generating nuclear mitochondrial DNA sequences (NUMTs). Here, we analysed, for the first time, NUMTs in the ovine genome. We obtained 760 alignment matches covering 513.8 kbp of the sheep nuclear genome. After a merging step, we identified 390 NUMT regions with a total length of ~720 kbp, representing 0.02% of the nuclear genome. We discovered copies of all mitochondrial regions and found that most NUMT regions are intergenic or intronic. Ovine NUMTs are mostly not transcribed. However, we identified within some of the NUMTs, potential new genes encoding nuclear humanin isoforms. To rule out the possibility that the identified NUMTs could be artifacts of the Oar Rambouillet v1.0 genome assembly, we validated experimentally nine NUMT regions by PCR amplification. As we found several NUMT regions showing high similarity to the mitochondrial genome that potentially could pose a risk to ovine DNA mitochondrial studies, special care must be taken for the selection of primers for PCR amplification of mitochondrial DNA sequences.
Collapse
Affiliation(s)
- M Féménia
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, F-78350, France
| | - M Charles
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, F-78350, France.,SIGENAE, INRAE, Jouy-en-Josas, F-78350, France
| | - A Boulling
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, F-78350, France
| | - D Rocha
- INRAE, AgroParisTech, GABI, Université Paris-Saclay, Jouy-en-Josas, F-78350, France
| |
Collapse
|
7
|
Safi M, Najib AR. Evaluation of circulating cell-free nuclear and mitochondrial DNA levels in Syrian patients with breast tumor. Exp Ther Med 2020; 21:65. [PMID: 33365065 PMCID: PMC7716636 DOI: 10.3892/etm.2020.9497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/03/2020] [Indexed: 01/05/2023] Open
Abstract
In the last decade, the roles of circulating cell free nuclear (ccfn) and ccf mitochondrial (ccfmt) DNA as potential noninvasive biomarkers have been demonstrated in numerous different types of disease, including cancer. However, the results remain controversial. The present study aimed to investigate the roles of ccfnDNA and ccfmtDNA levels in the plasma of patients with breast cancer. A total of 84 Syrian female subjects were included in the study, who were divided into 3 groups: i) Malignant disease group (n=33); ii) benign disease group (n=26); and iii) healthy control group (n=25). CcfnDNA and ccfmtDNA were determined using real-time quantitative PCR and the reactions were followed by melting curve analysis. The results indicated no significant differences in the plasma levels of ccfnDNA, ccfmtDNA or the ratio of ccfmtDNA/ccfnDNA between the study groups. Of note, a positive correlation was observed between the ccfmtDNA/ccfnDNA ratio and age in the control group (P=0.012; r=0.505). In addition, a positive correlation was identified between ccfnDNA levels and the estrogen receptor status (P=0.045; r=0.416), while a negative correlation between ccfmtDNA/ccfnDNA ratio and the progesterone receptor status was obtained (P=0.045; r=-0.448. Aging and the role of hormones in the cells may be responsible for these results. In the future, the present study should be followed up with mutation detection analyses and large-scale studies.
Collapse
Affiliation(s)
- Milda Safi
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus 22743, Syria
| | - Abdul Rahman Najib
- Department of Biostatistics, Faculty of Statistics, Damascus University, Damascus 22743, Syria
| |
Collapse
|
8
|
Puertas MJ, González-Sánchez M. Insertions of mitochondrial DNA into the nucleus—effects and role in cell evolution. Genome 2020; 63:365-374. [DOI: 10.1139/gen-2019-0151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We review the insertion of mitochondrial DNA (mtDNA) fragments into nuclear DNA (NUMTS) as a general and ongoing process that has occurred many times during genome evolution. Fragments of mtDNA are generated during the lifetime of organisms in both somatic and germinal cells, by the production of reactive oxygen species in the mitochondria. The fragments are inserted into the nucleus during the double-strand breaks repair via the non-homologous end-joining machinery, followed by genomic instability, giving rise to the high variability observed in NUMT patterns among species, populations, or genotypes. Some de novo produced mtDNA insertions show harmful effects, being involved in human diseases, carcinogenesis, and ageing. NUMT generation is a non-stop process overpassing the Mendelian transmission. This parasitic property ensures their survival even against their harmful effects. The accumulation of mtDNA fragments mainly at pericentromeric and subtelomeric regions is important to understand the transmission and integration of NUMTs into the genomes. The possible effect of female meiotic drive for mtDNA insertions at centromeres remains to be studied. In spite of the harmful feature of NUMTs, they are important in cell evolution, representing a major source of genomic variation.
Collapse
Affiliation(s)
- María J. Puertas
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain
| | - Mónica González-Sánchez
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain
| |
Collapse
|
9
|
Ludwig-Słomczyńska AH, Seweryn MT, Kapusta P, Pitera E, Handelman SK, Mantaj U, Cyganek K, Gutaj P, Dobrucka Ł, Wender-Ożegowska E, Małecki MT, Wołkow PP. Mitochondrial GWAS and association of nuclear - mitochondrial epistasis with BMI in T1DM patients. BMC Med Genomics 2020; 13:97. [PMID: 32635923 PMCID: PMC7341625 DOI: 10.1186/s12920-020-00752-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND BMI is a strong indicator of complications from type I diabetes, especially under intensive treatment. METHODS We have genotyped 435 type 1 diabetics using Illumina Infinium Omni Express Exome-8 v1.4 arrays and performed mitoGWAS on BMI. We identified additive interactions between mitochondrial and nuclear variants in genes associated with mitochondrial functioning MitoCarta2.0 and confirmed and refined the results on external cohorts: the Framingham Heart Study (FHS) and GTEx data. Linear mixed model analysis was performed using the GENESIS package in R/Bioconductor. RESULTS We find a borderline significant association between the mitochondrial variant rs28357980, localized to MT-ND2, and BMI (β = - 0.69, p = 0.056). This BMI association was confirmed on 1889 patients from FHS cohort (β = - 0.312, p = 0.047). Next, we searched for additive interactions between mitochondrial and nuclear variants. MT-ND2 variants interacted with variants in the genes SIRT3, ATP5B, CYCS, TFB2M and POLRMT. TFB2M is a mitochondrial transcription factor and together with TFAM creates a transcription promoter complex for the mitochondrial polymerase POLRMT. We have found an interaction between rs3021088 in MT-ND2 and rs6701836 in TFB2M leading to BMI decrease (inter_pval = 0.0241), while interaction of rs3021088 in MT-ND2 and rs41542013 in POLRMT led to BMI increase (inter_pval = 0.0004). The influence of these interactions on BMI was confirmed in external cohorts. CONCLUSIONS Here, we have shown that variants in the mitochondrial genome as well as additive interactions between mitochondrial and nuclear SNPs influence BMI in T1DM and general cohorts.
Collapse
Affiliation(s)
| | - Michał T Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
- The Ohio State University Wexner Medical Center, Department of Cancer Biology and Genetics, Columbus, OH, USA
| | - Przemysław Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Ewelina Pitera
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Samuel K Handelman
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Urszula Mantaj
- Division of Reproduction, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Cyganek
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
| | - Paweł Gutaj
- Division of Reproduction, Poznań University of Medical Sciences, Poznań, Poland
| | - Łucja Dobrucka
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
| | | | - Maciej T Małecki
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł P Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
10
|
Survey of mitochondrial sequences integrated into the bovine nuclear genome. Sci Rep 2020; 10:2077. [PMID: 32034268 PMCID: PMC7005759 DOI: 10.1038/s41598-020-59155-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/21/2020] [Indexed: 11/25/2022] Open
Abstract
Nuclear copies of the mitochondrial DNA (NUMTs) have already been described in several species. In this context, we identified and analysed 166 bovine NUMT regions with a total length of 430 kbp, representing about 0.02% of the cattle nuclear genome. Copies of all mitochondrial regions were detected in the nuclear genome, with distinct degrees of sequence similarity to the mitogenome. Some NUMT regions include large mitogenome segments and show high similarity to the organelle genome sequence. NUMT regions are frequently modified by insertion of repetitive sequences and by sequence rearrangements. We confirmed the existence of 29 NUMT regions by PCR amplification using DNA from the cow (Dominette) which was used to generate the bovine genome reference sequence, ruling out the possibility that these NUMTs could be artifacts of the genome assembly. As there are NUMT regions with high similarity to the mitogenome, special care is needed when designing primers for mitochondrial DNA amplification. Our results can therefore be used to avoid co-amplification of bovine nuclear sequences similar to mitochondrial DNA.
Collapse
|
11
|
Mishmar D, Levin R, Naeem MM, Sondheimer N. Higher Order Organization of the mtDNA: Beyond Mitochondrial Transcription Factor A. Front Genet 2019; 10:1285. [PMID: 31998357 PMCID: PMC6961661 DOI: 10.3389/fgene.2019.01285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023] Open
Abstract
The higher order organization of eukaryotic and prokaryotic genomes is pivotal in the regulation of gene expression. Specifically, chromatin accessibility in eukaryotes and nucleoid accessibility in bacteria are regulated by a cohort of proteins to alter gene expression in response to diverse physiological conditions. By contrast, prior studies have suggested that the mitochondrial genome (mtDNA) is coated solely by mitochondrial transcription factor A (TFAM), whose increased cellular concentration was proposed to be the major determinant of mtDNA packaging in the mitochondrial nucleoid. Nevertheless, recent analysis of DNase-seq and ATAC-seq experiments from multiple human and mouse samples suggest gradual increase in mtDNA occupancy during the course of embryonic development to generate a conserved footprinting pattern which correlate with sites that have low TFAM occupancy in vivo (ChIP-seq) and tend to adopt G-quadruplex structures. These findings, along with recent identification of mtDNA binding by known modulators of chromatin accessibility such as MOF, suggest that mtDNA higher order organization is generated by cross talk with the nuclear regulatory system, may have a role in mtDNA regulation, and is more complex than once thought.
Collapse
Affiliation(s)
- Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rotem Levin
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mansur M Naeem
- Institute of Medical Sciences and the Department of Paediatrics, The University of Toronto, Toronto, ON, Canada
| | - Neal Sondheimer
- Institute of Medical Sciences and the Department of Paediatrics, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Boggan RM, Lim A, Taylor RW, McFarland R, Pickett SJ. Resolving complexity in mitochondrial disease: Towards precision medicine. Mol Genet Metab 2019; 128:19-29. [PMID: 31648942 DOI: 10.1016/j.ymgme.2019.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases, caused by mutations in either the nuclear or mitochondrial genomes (mtDNA), are the most common form of inherited neurometabolic disorders. They are remarkably heterogeneous, both in their clinical presentation and genetic etiology, presenting challenges for diagnosis, clinical management and elucidation of molecular mechanism. The multifaceted nature of these diseases, compounded by the unique characteristics of mitochondrial genetics, cement their space in the field of complex disease. In this review we examine the m.3243A>G variant, one of the most prevalent mitochondrial DNA mutations, using it as an exemplar to demonstrate the challenges presented by these complex disorders. Disease caused by m.3243A>G is one of the most phenotypically diverse of all mitochondrial diseases; we outline known causes of this heterogeneity including mtDNA heteroplasmy, mtDNA copy number and nuclear genetic factors. We consider the impact that this has in the clinic, discussing the personalized management of common manifestations attributed to this pathogenic mtDNA variant, including hearing impairment, diabetes mellitus, myopathy, cardiac disease, stroke-like episodes and gastrointestinal disturbances. Future research into this complex disorder must account for this heterogeneity, benefitting from the use of large patient cohorts to build upon current clinical expertise. Through multi-disciplinary collaboration, the complexities of this mitochondrial disease can be addressed with the variety of diagnostic, prognostic, and treatment approaches that are moulded to best fit the needs of each individual patient.
Collapse
Affiliation(s)
- Róisín M Boggan
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Albert Lim
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
13
|
Diesch J, Bywater MJ, Sanij E, Cameron DP, Schierding W, Brajanovski N, Son J, Sornkom J, Hein N, Evers M, Pearson RB, McArthur GA, Ganley ARD, O’Sullivan JM, Hannan RD, Poortinga G. Changes in long-range rDNA-genomic interactions associate with altered RNA polymerase II gene programs during malignant transformation. Commun Biol 2019; 2:39. [PMID: 30701204 PMCID: PMC6349880 DOI: 10.1038/s42003-019-0284-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 12/28/2018] [Indexed: 12/15/2022] Open
Abstract
The three-dimensional organization of the genome contributes to its maintenance and regulation. While chromosomal regions associate with nucleolar ribosomal RNA genes (rDNA), the biological significance of rDNA-genome interactions and whether they are dynamically regulated during disease remain unclear. rDNA chromatin exists in multiple inactive and active states and their transition is regulated by the RNA polymerase I transcription factor UBTF. Here, using a MYC-driven lymphoma model, we demonstrate that during malignant progression the rDNA chromatin converts to the open state, which is required for tumor cell survival. Moreover, this rDNA transition co-occurs with a reorganization of rDNA-genome contacts which correlate with gene expression changes at associated loci, impacting gene ontologies including B-cell differentiation, cell growth and metabolism. We propose that UBTF-mediated conversion to open rDNA chromatin during malignant transformation contributes to the regulation of specific gene pathways that regulate growth and differentiation through reformed long-range physical interactions with the rDNA.
Collapse
Affiliation(s)
- Jeannine Diesch
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Present Address: Josep Carreras Leukaemia Research Institute, Barcelona, 08021 Spain
| | - Megan J. Bywater
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Present Address: QIMR Berghofer Medical Research Institute, Brisbane, QLD 4029 Australia
| | - Elaine Sanij
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Department of Pathology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Donald P. Cameron
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
| | - William Schierding
- Liggins Institute, The University of Auckland, Auckland, 1023 New Zealand
| | - Natalie Brajanovski
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
| | - Jinbae Son
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Jirawas Sornkom
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia
| | - Maurits Evers
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia
| | - Richard B. Pearson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800 VIC Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Grant A. McArthur
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3065 Australia
| | - Austen R. D. Ganley
- School of Biological Sciences, The University of Auckland, Auckland, 1010 New Zealand
| | | | - Ross D. Hannan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800 VIC Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia
| | - Gretchen Poortinga
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC 3000 Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010 Australia
- Department of Medicine, St Vincent’s Hospital, University of Melbourne, Fitzroy, VIC 3065 Australia
| |
Collapse
|
14
|
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating and lethal neurodegenerative diseases seen comorbidly in up to 15% of patients. Despite several decades of research, no effective treatment or disease-modifying strategies have been developed. We now understand more than before about the genetics and biology behind ALS and FTD, but the genetic etiology for the majority of patients is still unknown and the phenotypic variability observed across patients, even those carrying the same mutation, is enigmatic. Additionally, susceptibility factors leading to neuronal vulnerability in specific central nervous system regions involved in disease are yet to be identified. As the inherited but dynamic epigenome acts as a cell-specific interface between the inherited fixed genome and both cell-intrinsic mechanisms and environmental input, adaptive epigenetic changes might contribute to the ALS/FTD aspects we still struggle to comprehend. This chapter summarizes our current understanding of basic epigenetic mechanisms, how they relate to ALS and FTD, and their potential as therapeutic targets. A clear understanding of the biological mechanisms driving these two currently incurable diseases is urgent-well-needed therapeutic strategies need to be developed soon. Disease-specific epigenetic changes have already been observed in patients and these might be central to this endeavor.
Collapse
Affiliation(s)
- Mark T W Ebbert
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rebecca J Lank
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Veronique V Belzil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA. .,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Fadason T, Ekblad C, Ingram JR, Schierding WS, O'Sullivan JM. Physical Interactions and Expression Quantitative Traits Loci Identify Regulatory Connections for Obesity and Type 2 Diabetes Associated SNPs. Front Genet 2017; 8:150. [PMID: 29081791 PMCID: PMC5645506 DOI: 10.3389/fgene.2017.00150] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 09/28/2017] [Indexed: 12/25/2022] Open
Abstract
The mechanisms that underlie the association between obesity and type 2 diabetes are not fully understood. Here, we investigated the role of the 3D genome organization in the pathogeneses of obesity and type-2 diabetes. We interpreted the combined and differential impacts of 196 diabetes and 390 obesity associated single nucleotide polymorphisms (SNPs) by integrating data on the genes with which they physically interact (as captured by Hi-C) and the functional [i.e., expression quantitative trait loci (eQTL)] outcomes associated with these interactions. We identified 861 spatially regulated genes (e.g., AP3S2, ELP5, SVIP, IRS1, FADS2, WFS1, RBM6, HORMAD1, PYROXD2), which are enriched in tissues (e.g., adipose, skeletal muscle, pancreas) and biological processes and canonical pathways (e.g., lipid metabolism, leptin, and glucose-insulin signaling pathways) that are important for the pathogenesis of type 2 diabetes and obesity. Our discovery-based approach also identifies enrichment for eQTL SNP-gene interactions in tissues that are not classically associated with diabetes or obesity. We propose that the combinatorial action of active obesity and diabetes spatial eQTL SNPs on their gene pairs within different tissues reduces the ability of these tissues to contribute to the maintenance of a healthy energy metabolism.
Collapse
Affiliation(s)
- Tayaza Fadason
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Cameron Ekblad
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | | | | |
Collapse
|
16
|
Genome organization: connecting the developmental origins of disease and genetic variation. J Dev Orig Health Dis 2017; 9:260-265. [PMID: 28847340 DOI: 10.1017/s2040174417000678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An adverse early life environment can increase the risk of metabolic and other disorders later in life. Genetic variation can modify an individual's susceptibility to these environmental challenges. These gene by environment interactions are important, but difficult, to dissect. The nucleus is the primary organelle where environmental responses impact directly on the genetic variants within the genome, resulting in changes to the biology of the genome and ultimately the phenotype. Understanding genome biology requires the integration of the linear DNA sequence, epigenetic modifications and nuclear proteins that are present within the nucleus. The interactions between these layers of information may be captured in the emergent spatial genome organization. As such genome organization represents a key research area for decoding the role of genetic variation in the Developmental Origins of Health and Disease.
Collapse
|