1
|
Mitonuclear interactions influence multiple sclerosis risk. Gene 2020; 758:144962. [DOI: 10.1016/j.gene.2020.144962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/16/2022]
|
2
|
Rovcanin B, Jancic J, Samardzic J, Rovcanin M, Nikolic B, Ivancevic N, Novakovic I, Kostic V. In silico model of mtDNA mutations effect on secondary and 3D structure of mitochondrial rRNA and tRNA in Leber's hereditary optic neuropathy. Exp Eye Res 2020; 201:108277. [PMID: 32991883 DOI: 10.1016/j.exer.2020.108277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 09/05/2020] [Accepted: 09/25/2020] [Indexed: 02/03/2023]
Abstract
The Leber's hereditary optic neuropathy (LHON) is a rare disease caused by mitochondrial DNA (mtDNA) mutations. Beside primary mutations, the effect of secondary mtDNA mutations in still unclear. We examined the effect of secondary mtDNA mutations on secondary structure of different mitochondrial RNAs. Whole mitochondrial genome sequence of LHON patients has been obtained from in six non related pedigrees by Sanger sequencing method. The effect of mutations located in mitochondrial RNA genes was examined by creating in silico models of RNA secondary and regional 3D structure, accompanied by sequence conservation analysis. All three primary LHON mutations (m.3460G>A, m.11778G>A and m.14484 T>C) were revealed in study families. Four mutations in MT-RNR1 gene (m.750A>G, m.956delC, m.1438A>G and m.1555A>G) were identified and only an m.1555A>G causes significant changes of secondary structure of mitochondrial 12S ribosomal RNA (rRNA), while it is the only mutation which does not alter its 3D structure. Five mutations (m.1811A>G, m.2706A>G, m.2831G>A, m.3010G>A and m.3197T>C) were discovered in MT-RNR2 gene and all of them induced substantial alterations of mitochondrial 16S rRNA secondary structure. Significant changes of mitochondrial 16S rRNA 3D structure are caused by m.1811A>G, m.2706A>G, m.3010G>A and m.3197T>C. A single insertion variant (m.15986insG) has been found in the MT-TP gene which encodes mitochondrial transfer RNA for Proline (tRNA Pro). This mutation does not cause substantial changes of tRNA for Proline secondary structure, while the 3D geometry remains without major changes. Most of the mutation loci exhibited high level of sequence conservation. Presence of multiple mutations in a single family appears to cause more extensive changes in mitochondrial 12S and 16S rRNA, then their individual influence. The effect of discovered mutations on in silico modelled RNA structure is in a significant correlation with the present knowledge about the potential of these mutation to participate in the pathophysiology of LHON and other human diseases. The presence of certain multiple mitochondrial RNA mutations could be a possible explanation of LHON clinical presentation in some families. All revealed mutations have been evaluated for the first time in terms of in silico structural modelling. The application of bioinformatics tools such as secondary and 3D RNA structure prediction can have a great advantage in better understanding of the molecular standpoint of the LHON pathophysiology and clinical phenotype.
Collapse
Affiliation(s)
- Branislav Rovcanin
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Jasna Jancic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Janko Samardzic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia; Institute of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marija Rovcanin
- The Obstetrics and Gynecology Clinic Narodni Front, Belgrade, Serbia
| | - Blazo Nikolic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Ivancevic
- Clinic of Neurology and Psychiatry for Children and Youth, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Novakovic
- Institute for Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Kostic
- Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
3
|
Finsterer J. Only pathogenic variants in protein-coding mtDNA genes cause Leigh syndrome. J Neurol Sci 2019; 407:116447. [PMID: 31627182 DOI: 10.1016/j.jns.2019.116447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Josef Finsterer
- Krankenanstalt Rudolfstiftung, Messerli Institute, Vienna, Austria.
| |
Collapse
|
4
|
Boyko AN, Kozin MS, Osmak GZ, Kulakova OG, Favorova OO. Mitochondrial genome and risk of multiple sclerosis. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/2074-2711-2019-3-43-46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mitochondrial DNA (mtDNA) polymorphism makes a certain contribution to the formation of a genetic risk of multiple sclerosis (MS).Objective: to analyze the frequency of mtDNA variants in patients with MS and control individuals in the Russian population. A similar study was conducted for the first time.Patients and methods. The polymorphism of mtDNA was studied in the Russian population: in 283 unrelated patients with relapsing-remitting MS and in 290 unrelated healthy controls matched for gender and age.Results and discussion. The frequency of haplogroup J in the patients with MS was twice higher than that in the control group (p=0.0055) (odds ratio (OR) 2.00; 95% confidence interval (CI). 1.21–3.41). This association was mostly observed in women (p=0.0083) (OR 2.20; 95% CI, 1.19–4.03). There was also a significant association of the A allele of MT-ND5 (m. 13708G>A) with MS (p=0.03) (OR 1.89; 95% CI 1.11–3.32). Sex stratification showed that the association with MS was significant only in women (p=0.009; OR, 2.52; 95% CI, 1.29–5.14). Further investigations will aim to analyze mtDNA variability (at the level of individual polymorphisms, haplogroups, and whole genome) in patients with relapsing-remitting MS and in those with primary progressive MS versus healthy individuals and patients with relapsing-remitting MS according to disease severity.Conclusion. The data obtained in the Russian population suggest that mtDNA variations are involved in MS risk, to a greater extent in women.
Collapse
Affiliation(s)
- A. N. Boyko
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia;
Federal Center of Cerebrovascular Disease and Stroke, Ministry of Health of Russia
| | - M. S. Kozin
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia;
Federal Center of Cerebrovascular Disease and Stroke, Ministry of Health of Russia
| | - G. Zh. Osmak
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia;
Federal Center of Cerebrovascular Disease and Stroke, Ministry of Health of Russia
| | - O. G. Kulakova
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - O. O. Favorova
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| |
Collapse
|
5
|
Mehdizadeh E, Khalaj-Kondori M, Shaghaghi-Tarakdari Z, Sadigh-Eteghad S, Talebi M, Andalib S. Association of MS4A6A, CD33, and TREM2 gene polymorphisms with the late-onset Alzheimer's disease. ACTA ACUST UNITED AC 2019; 9:219-225. [PMID: 31799158 PMCID: PMC6879710 DOI: 10.15171/bi.2019.27] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/22/2019] [Accepted: 04/09/2019] [Indexed: 12/14/2022]
Abstract
![]()
Introduction: Alzheimer’s disease (AD), which is a progressive neurodegenerative disorder, causes structural and functional brain disruption. MS4A6A, TREM2, and CD33 gene polymorphisms loci have been found to be associated with the pathobiology of late-onset AD (LOAD). In the present study, we tested the hypothesis of association of LOAD with rs983392, rs75932628, and rs3865444 polymorphisms in MS4A6A, TREM2, CD33 genes, respectively.
Methods: In the present study, 113 LOAD patients and 100 healthy unrelated age- and gender-matched controls were selected. DNA was extracted from blood samples by the salting-out method and the genotyping was performed by RFLP-PCR. Electrophoresis was carried out on agarose gel. Sequencing was thereafter utilized for the confirmation of the results.
Results: Only CD33 rs3865444 polymorphism revealed a significant difference in the genotypic frequencies of GG (P = 0.001) and GT (P = 0.001), and allelic frequencies of G (P = 0.033) and T (P = 0.03) between LOAD patients and controls.
Conclusion: The evidence from the present study suggests that T allele of CD33 rs3865444 polymorphism is associated with LOAD in the studied Iranian population.
Collapse
Affiliation(s)
- Elham Mehdizadeh
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Zeinab Shaghaghi-Tarakdari
- Department of Genetics, Animal Biology Group, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sasan Andalib
- Neuroscience Research Center, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran.,Department of Neurosurgery, Poursina Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.,Center for Applied Neuroscience, Brain Research - Interdisciplinary Guided Excellence, BRIDGE, Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark.,Department of Psychiatry, Psychiatry in the Region of Southern Denmark, Odense, Denmark
| |
Collapse
|
6
|
Andalib S, Talebi M, Sakhinia E, Farhoudi M, Sadeghi-Bazargani H, Masoudian N, Michel TM, Vafaee MS, Gjedde A. Mitochondrial DNA G15927A and G15928A variations in patients with multiple sclerosis. Mult Scler Relat Disord 2019; 27:9-12. [DOI: 10.1016/j.msard.2018.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
|
7
|
Kozin MS, Kulakova OG, Favorova OO. Involvement of Mitochondria in Neurodegeneration in Multiple Sclerosis. BIOCHEMISTRY (MOSCOW) 2018; 83:813-830. [PMID: 30200866 DOI: 10.1134/s0006297918070052] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Functional disruption and neuronal loss followed by progressive dysfunction of the nervous system underlies the pathogenesis of numerous disorders defined as "neurodegenerative diseases". Multiple sclerosis, a chronic inflammatory demyelinating disease of the central nervous system resulting in serious neurological dysfunctions and disability, is one of the most common neurodegenerative diseases. Recent studies suggest that disturbances in mitochondrial functioning are key factors leading to neurodegeneration. In this review, we consider data on mitochondrial dysfunctions in multiple sclerosis, which were obtained both with patients and with animal models. The contemporary data indicate that the axonal degeneration in multiple sclerosis largely results from the activation of Ca2+-dependent proteases and from misbalance of ion homeostasis caused by energy deficiency. The genetic studies analyzing association of mitochondrial DNA polymorphic variants in multiple sclerosis suggest the participation of mitochondrial genome variability in the development of this disease, although questions of the involvement of individual genomic variants are far from being resolved.
Collapse
Affiliation(s)
- M S Kozin
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia. .,National Medical Research Center of Cardiology, Moscow, 121552, Russia
| | - O G Kulakova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia. .,National Medical Research Center of Cardiology, Moscow, 121552, Russia
| | - O O Favorova
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.,National Medical Research Center of Cardiology, Moscow, 121552, Russia
| |
Collapse
|