1
|
Baysan M, Broere M, Wille ME, Bergsma JE, Mik EG, Juffermans NP, Tsonaka R, van der Bom JG, Arbous SM. Description of mitochondrial oxygen tension and its variability in healthy volunteers. PLoS One 2024; 19:e0300602. [PMID: 38829894 PMCID: PMC11146699 DOI: 10.1371/journal.pone.0300602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/27/2024] [Indexed: 06/05/2024] Open
Abstract
OBJECTIVES Describing mitochondrial oxygenation (mitoPO2) and its within- and between-subject variability over time after 5-aminolevulinic acid (ALA) plaster application in healthy volunteers. DESIGN Prospective cohort study. SETTING Measurements were performed in Leiden University Medical Center, the Netherlands. PARTICIPANTS Healthy volunteers enrolled from July to September 2020. INTERVENTIONS Two ALA plasters were placed parasternal left and right, with a 3-hour time interval, to examine the influence of the calendar time on the value of mitoPO2. We measured mitoPO2 at 4, 5, 7, 10, 28, and 31 hours after ALA plaster 1 application, and at 4, 5, 7, 25, and 28 hours after ALA plaster 2 application. PRIMARY AND SECONDARY OUTCOME MEASURES At each time point, five mitoPO2 measurements were performed. Within-subject variability was defined as the standard deviation (SD) of the mean of five measurements per timepoint of a study participant. The between-subject variability was the SD of the mean mitoPO2 value of the study population per timepoint. RESULTS In 16 completed inclusions, median mitoPO2 values and within-subject variability were relatively similar over time at all time points for both plasters. An increase in overall between-subject variability was seen after 25 hours ALA plaster time (19.6 mm Hg vs 23.9 mm Hg after respectively 10 and 25 hours ALA plaster time). CONCLUSIONS The mitoPO2 values and within-subject variability remained relatively stable over time in healthy volunteers. An increase in between-subject variability was seen after 25 hours ALA plaster time warranting replacement of the ALA plaster one day after its application. TRIAL REGISTRATION ClinicalTrials.gov with trial number NCT04626661.
Collapse
Affiliation(s)
- Meryem Baysan
- Department of Intensive Care Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, the Netherlands
| | - Mark Broere
- Department of Intensive Care Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, the Netherlands
| | - Maarten E. Wille
- Department of Intensive Care Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Jule E. Bergsma
- Department of Intensive Care Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Egbert G. Mik
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC- University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Nicole P. Juffermans
- Department of Intensive Care Medicine, OLVG Hospital, Amsterdam, the Netherlands
- Department of Laboratory of Translation Intensive Care, Erasmus MC- University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Roula Tsonaka
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Johanna G. van der Bom
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, the Netherlands
| | - Sesmu M. Arbous
- Department of Intensive Care Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2
|
Hilderink BN, Crane RF, van den Bogaard B, Pillay J, Juffermans NP. Hyperoxemia and hypoxemia impair cellular oxygenation: a study in healthy volunteers. Intensive Care Med Exp 2024; 12:37. [PMID: 38619625 PMCID: PMC11018572 DOI: 10.1186/s40635-024-00619-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/28/2024] [Indexed: 04/16/2024] Open
Abstract
INTRODUCTION Administration of oxygen therapy is common, yet there is a lack of knowledge on its ability to prevent cellular hypoxia as well as on its potential toxicity. Consequently, the optimal oxygenation targets in clinical practice remain unresolved. The novel PpIX technique measures the mitochondrial oxygen tension in the skin (mitoPO2) which allows for non-invasive investigation on the effect of hypoxemia and hyperoxemia on cellular oxygen availability. RESULTS During hypoxemia, SpO2 was 80 (77-83)% and PaO2 45(38-50) mmHg for 15 min. MitoPO2 decreased from 42(35-51) at baseline to 6(4.3-9)mmHg (p < 0.001), despite 16(12-16)% increase in cardiac output which maintained global oxygen delivery (DO2). During hyperoxic breathing, an FiO2 of 40% decreased mitoPO2 to 20 (9-27) mmHg. Cardiac output was unaltered during hyperoxia, but perfused De Backer density was reduced by one-third (p < 0.01). A PaO2 < 100 mmHg and > 200 mmHg were both associated with a reduction in mitoPO2. CONCLUSIONS Hypoxemia decreases mitoPO2 profoundly, despite complete compensation of global oxygen delivery. In addition, hyperoxemia also decreases mitoPO2, accompanied by a reduction in microcirculatory perfusion. These results suggest that mitoPO2 can be used to titrate oxygen support.
Collapse
Affiliation(s)
- Bashar N Hilderink
- Department of Intensive Care, OLVG Hospital, Amsterdam, The Netherlands.
| | - Reinier F Crane
- Department of Intensive Care, OLVG Hospital, Amsterdam, The Netherlands
| | | | - Janesh Pillay
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nicole P Juffermans
- Department of Intensive Care, OLVG Hospital, Amsterdam, The Netherlands
- Laboratory of Translational Intensive Care, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Wang G, Lian H, Zhang H, Wang X. Microcirculation and Mitochondria: The Critical Unit. J Clin Med 2023; 12:6453. [PMID: 37892591 PMCID: PMC10607663 DOI: 10.3390/jcm12206453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Critical illness is often accompanied by a hemodynamic imbalance between macrocirculation and microcirculation, as well as mitochondrial dysfunction. Microcirculatory disorders lead to abnormalities in the supply of oxygen to tissue cells, while mitochondrial dysfunction leads to abnormal energy metabolism and impaired tissue oxygen utilization, making these conditions important pathogenic factors of critical illness. At the same time, there is a close relationship between the microcirculation and mitochondria. We introduce here the concept of a "critical unit", with two core components: microcirculation, which mainly comprises the microvascular network and endothelial cells, especially the endothelial glycocalyx; and mitochondria, which are mainly involved in energy metabolism but perform other non-negligible functions. This review also introduces several techniques and devices that can be utilized for the real-time synchronous monitoring of the microcirculation and mitochondria, and thus critical unit monitoring. Finally, we put forward the concepts and strategies of critical unit-guided treatment.
Collapse
Affiliation(s)
- Guangjian Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Hui Lian
- Department of Health Care, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China;
| | - Hongmin Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China; (G.W.); (H.Z.)
| |
Collapse
|
4
|
Monitoring of mitochondrial oxygen tension in the operating theatre: An observational study with the novel COMET® monitor. PLoS One 2023; 18:e0278561. [PMID: 36758026 PMCID: PMC9910761 DOI: 10.1371/journal.pone.0278561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/20/2022] [Indexed: 02/10/2023] Open
Abstract
INTRODUCTION The newly introduced Cellular Oxygen METabolism (COMET®) monitor enables the measurement of mitochondrial oxygen tension (mitoPO2) using the protoporphyrin IX triplet state lifetime technique (PpIX-TSLT). This study aims to investigate the feasibility and applicability of the COMET® measurements in the operating theatre and study the behavior of the new parameter mitoPO2 during stable operating conditions. METHODS In this observational study mitochondrial oxygenation was measured in 20 patients during neurosurgical procedures using the COMET® device. Tissue oxygenation and local blood flow were measured by the Oxygen to See (O2C). Primary outcomes included mitoPO2, skin temperature, mean arterial blood pressure, local blood flow and tissue oxygenation. RESULTS All patients remained hemodynamically stable during surgery. Mean baseline mitoPO2 was 60 ± 19 mmHg (mean ± SD) and mean mitoPO2 remained between 40-60 mmHg during surgery, but tended to decrease over time in line with increasing skin temperature. CONCLUSION This study presents the feasibility of mitochondrial oxygenation measurements as measured by the COMET® monitor in the operating theatre and shows the parameter mitoPO2 to behave in a stable and predictable way in the absence of notable hemodynamic alterations. The results provide a solid base for further research into the added value of mitochondrial oxygenation measurements in the perioperative trajectory.
Collapse
|
5
|
Streng LWJM, de Wijs CJ, Raat NJH, Specht PAC, Sneiders D, van der Kaaij M, Endeman H, Mik EG, Harms FA. In Vivo and Ex Vivo Mitochondrial Function in COVID-19 Patients on the Intensive Care Unit. Biomedicines 2022; 10:biomedicines10071746. [PMID: 35885051 PMCID: PMC9313105 DOI: 10.3390/biomedicines10071746] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial dysfunction has been linked to disease progression in COVID-19 patients. This observational pilot study aimed to assess mitochondrial function in COVID-19 patients at intensive care unit (ICU) admission (T1), seven days thereafter (T2), and in healthy controls and a general anesthesia group. Measurements consisted of in vivo mitochondrial oxygenation and oxygen consumption, in vitro assessment of mitochondrial respiration in platelet-rich plasma (PRP) and peripheral blood mononuclear cells (PBMCs), and the ex vivo quantity of circulating cell-free mitochondrial DNA (mtDNA). The median mitoVO2 of COVID-19 patients on T1 and T2 was similar and tended to be lower than the mitoVO2 in the healthy controls, whilst the mitoVO2 in the general anesthesia group was significantly lower than that of all other groups. Basal platelet (PLT) respiration did not differ substantially between the measurements. PBMC basal respiration was increased by approximately 80% in the T1 group when contrasted to T2 and the healthy controls. Cell-free mtDNA was eight times higher in the COVID-T1 samples when compared to the healthy controls samples. In the COVID-T2 samples, mtDNA was twofold lower when compared to the COVID-T1 samples. mtDNA levels were increased in COVID-19 patients but were not associated with decreased mitochondrial O2 consumption in vivo in the skin, and ex vivo in PLT or PBMC. This suggests the presence of increased metabolism and mitochondrial damage.
Collapse
Affiliation(s)
- Lucia W. J. M. Streng
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
- Correspondence:
| | - Calvin J. de Wijs
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Nicolaas J. H. Raat
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Patricia A. C. Specht
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Dimitri Sneiders
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Mariëlle van der Kaaij
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Henrik Endeman
- Department of Intensive Care, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Egbert G. Mik
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| | - Floor A. Harms
- Laboratory of Experimental Anesthesiology, Department of Anesthesiology, Erasmus MC, University Medical Center Rotterdam, 3000 CA Rotterdam, The Netherlands; (C.J.d.W.); (N.J.H.R.); (P.A.C.S.); (D.S.); (M.v.d.K.); (E.G.M.); (F.A.H.)
| |
Collapse
|
6
|
Harms FA, Mik EG. In Vivo Assessment of Mitochondrial Oxygen Consumption. Methods Mol Biol 2021; 2277:175-185. [PMID: 34080152 DOI: 10.1007/978-1-0716-1270-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The Protoporphyrin IX-Triplet State Lifetime Technique (PpIX-TSLT) has been proposed by us as a potential clinical noninvasive tool for monitoring mitochondrial function. We have been working on the development of mitochondrial respirometry for monitoring mitochondrial oxygen tension (mitoPO2) and mitochondrial oxygen consumption (mitoVO2) in skin. In this work, we describe the principles of the method in small experimental animals.
Collapse
Affiliation(s)
- Floor A Harms
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Egbert G Mik
- Department of Anesthesiology, Laboratory of Experimental Anesthesiology, Erasmus MC - University Medical Center Rotterdam, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Baumbach P, Schmidt-Winter C, Hoefer J, Derlien S, Best N, Herbsleb M, Coldewey SM. A Pilot Study on the Association of Mitochondrial Oxygen Metabolism and Gas Exchange During Cardiopulmonary Exercise Testing: Is There a Mitochondrial Threshold? Front Med (Lausanne) 2020; 7:585462. [PMID: 33409287 PMCID: PMC7779397 DOI: 10.3389/fmed.2020.585462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Mitochondria are the key players in aerobic energy generation via oxidative phosphorylation. Consequently, mitochondrial function has implications on physical performance in health and disease ranging from high performance sports to critical illness. The protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) allows in vivo measurements of mitochondrial oxygen tension (mitoPO2). Hitherto, few data exist on the relation of mitochondrial oxygen metabolism and ergospirometry-derived variables during physical performance. This study investigates the association of mitochondrial oxygen metabolism with gas exchange and blood gas analysis variables assessed during cardiopulmonary exercise testing (CPET) in aerobic and anaerobic metabolic phases. Methods: Seventeen volunteers underwent an exhaustive CPET (graded multistage protocol, 50 W/5 min increase), of which 14 were included in the analysis. At baseline and for every load level PpIX-TSLT-derived mitoPO2 measurements were performed every 10 s with 1 intermediate dynamic measurement to obtain mitochondrial oxygen consumption and delivery (mito V . O2, mito D . O2). In addition, variables of gas exchange and capillary blood gas analyses were obtained to determine ventilatory and lactate thresholds (VT, LT). Metabolic phases were defined in relation to VT1 and VT2 (aerobic: <VT1, aerobic-anaerobic transition: ≥VT1 and <VT2 and anaerobic: ≥VT2). We used linear mixed models to compare variables of PpIX-TSLT between metabolic phases and to analyze their associations with variables of gas exchange and capillary blood gas analyses. Results: MitoPO2 increased from the aerobic to the aerobic-anaerobic phase followed by a subsequent decline. A mitoPO2 peak, termed mitochondrial threshold (MT), was observed in most subjects close to LT2. Mito D . O2 increased during CPET, while no changes in mito V . O2 were observed. MitoPO2 was negatively associated with partial pressure of end-tidal oxygen and capillary partial pressure of oxygen and positively associated with partial pressure of end-tidal carbon dioxide and capillary partial pressure of carbon dioxide. Mito D . O2 was associated with cardiovascular variables. We found no consistent association for mito V . O2. Conclusion: Our results indicate an association between pulmonary respiration and cutaneous mitoPO2 during physical exercise. The observed mitochondrial threshold, coinciding with the metabolic transition from an aerobic to an anaerobic state, might be of importance in critical care as well as in sports medicine.
Collapse
Affiliation(s)
- Philipp Baumbach
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Christiane Schmidt-Winter
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Jan Hoefer
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany
| | - Steffen Derlien
- Institute of Physiotherapy, Jena University Hospital, Jena, Germany
| | - Norman Best
- Institute of Physiotherapy, Jena University Hospital, Jena, Germany
| | - Marco Herbsleb
- Department of Sports Medicine and Health Promotion, Friedrich Schiller University, Jena, Germany
| | - Sina M Coldewey
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany.,Septomics Research Center, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW To fully exploit the concept of hemodynamic coherence in resuscitating critically ill one should preferably take into account information about the state of parenchymal cells. Monitoring of mitochondrial oxygen tension (mitoPO2) has emerged as a clinical means to assess information of oxygen delivery and oxygen utilization at the mitochondrial level. This review will outline the basics of the technique, summarize its development and describe the rationale of measuring oxygen at the mitochondrial level. RECENT FINDINGS Mitochondrial oxygen tension can be measured by means of the protoporphyrin IX-Triplet State Lifetime Technique (PpIX-TSLT). After validation and use in preclinical animal models, the technique has recently become commercially available in the form of a clinical measuring system. This system has now been used in a number of healthy volunteer studies and is currently being evaluated in studies in perioperative and intensive care patients in several European university hospitals. SUMMARY PpIX-TSLT is a noninvasive and well tolerated method to assess aspects of mitochondrial function at the bedside. It allows doctors to look beyond the macrocirculation and microcirculation and to take the oxygen balance at the cellular level into account in treatment strategies.
Collapse
|
9
|
Merz T, Denoix N, Huber-Lang M, Singer M, Radermacher P, McCook O. Microcirculation vs. Mitochondria-What to Target? Front Med (Lausanne) 2020; 7:416. [PMID: 32903633 PMCID: PMC7438707 DOI: 10.3389/fmed.2020.00416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023] Open
Abstract
Circulatory shock is associated with marked disturbances of the macro- and microcirculation and flow heterogeneities. Furthermore, a lack of tissue adenosine trisphosphate (ATP) and mitochondrial dysfunction are directly associated with organ failure and poor patient outcome. While it remains unclear if microcirculation-targeted resuscitation strategies can even abolish shock-induced flow heterogeneity, mitochondrial dysfunction and subsequently diminished ATP production could still lead to organ dysfunction and failure even if microcirculatory function is restored or maintained. Preserved mitochondrial function is clearly associated with better patient outcome. This review elucidates the role of the microcirculation and mitochondria during circulatory shock and patient management and will give a viewpoint on the advantages and disadvantages of tailoring resuscitation to microvascular or mitochondrial targets.
Collapse
Affiliation(s)
- Tamara Merz
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Nicole Denoix
- Clinic for Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Mervyn Singer
- Bloomsbury Institute for Intensive Care Medicine, University College London, London, United Kingdom
| | - Peter Radermacher
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| | - Oscar McCook
- Institute for Anesthesiological Pathophysiology and Process Engineering, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|