1
|
Zhang M, Wei J, He C, Sui L, Jiao C, Zhu X, Pan X. Inter- and intracellular mitochondrial communication: signaling hubs in aging and age-related diseases. Cell Mol Biol Lett 2024; 29:153. [PMID: 39695918 DOI: 10.1186/s11658-024-00669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024] Open
Abstract
Mitochondria are versatile and complex organelles that can continuously communicate and interact with the cellular milieu. Deregulated communication between mitochondria and host cells/organelles has significant consequences and is an underlying factor of many pathophysiological conditions, including the process of aging. During aging, mitochondria lose function, and mitocellular communication pathways break down; mitochondrial dysfunction interacts with mitochondrial dyscommunication, forming a vicious circle. Therefore, strategies to protect mitochondrial function and promote effective communication of mitochondria can increase healthy lifespan and longevity, which might be a new treatment paradigm for age-related disorders. In this review, we comprehensively discuss the signal transduction mechanisms of inter- and intracellular mitochondrial communication, as well as the interactions between mitochondrial communication and the hallmarks of aging. This review emphasizes the indispensable position of inter- and intracellular mitochondrial communication in the aging process of organisms, which is crucial as the cellular signaling hubs. In addition, we also specifically focus on the status of mitochondria-targeted interventions to provide potential therapeutic targets for age-related diseases.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jin Wei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chang He
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liutao Sui
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chucheng Jiao
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
2
|
Jiao Q, Xiang L, Chen Y. Mitochondrial transplantation: A promising therapy for mitochondrial disorders. Int J Pharm 2024; 658:124194. [PMID: 38703929 DOI: 10.1016/j.ijpharm.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
As a vital energy source for cellular metabolism and tissue survival, the mitochondrion can undergo morphological or positional change and even shuttle between cells in response to various stimuli and energy demands. Multiple human diseases are originated from mitochondrial dysfunction, but the curative succusses by traditional treatments are limited. Mitochondrial transplantation therapy (MTT) is an innovative therapeutic approach that is to deliver the healthy mitochondria either derived from normal cells or reassembled through synthetic biology into the cells and tissues suffering from mitochondrial damages and finally replace their defective mitochondria and restore their function. MTT has already been under investigation in clinical trials for cardiac ischemia-reperfusion injury and given an encouraging performance in animal models of numerous fatal critical diseases including central nervous system disorders, cardiovascular diseases, inflammatory conditions, cancer, renal injury, and pulmonary damage. This review article summarizes the mechanisms and strategies of mitochondrial transfer and the MTT application for types of mitochondrial diseases, and discusses the potential challenge in MTT clinical application, aiming to exhibit the good therapeutic prospects of MTTs in clinics.
Collapse
Affiliation(s)
- Qiangqiang Jiao
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China
| | - Li Xiang
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Yuping Chen
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China; Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China.
| |
Collapse
|
3
|
Aponte PM, Gutierrez-Reinoso MA, Garcia-Herreros M. Bridging the Gap: Animal Models in Next-Generation Reproductive Technologies for Male Fertility Preservation. Life (Basel) 2023; 14:17. [PMID: 38276265 PMCID: PMC10820126 DOI: 10.3390/life14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
This review aims to explore advanced reproductive technologies for male fertility preservation, underscoring the essential role that animal models have played in shaping these techniques through historical contexts and into modern applications. Rising infertility concerns have become more prevalent in human populations recently. The surge in male fertility issues has prompted advanced reproductive technologies, with animal models playing a pivotal role in their evolution. Historically, animal models have aided our understanding in the field, from early reproductive basic research to developing techniques like artificial insemination, multiple ovulation, and in vitro fertilization. The contemporary landscape of male fertility preservation encompasses techniques such as sperm cryopreservation, testicular sperm extraction, and intracytoplasmic sperm injection, among others. The relevance of animal models will undoubtedly bridge the gap between traditional methods and revolutionary next-generation reproductive techniques, fortifying our collective efforts in enhancing male fertility preservation strategies. While we possess extensive knowledge about spermatogenesis and its regulation, largely thanks to insights from animal models that paved the way for human infertility treatments, a pressing need remains to further understand specific infertility issues unique to humans. The primary aim of this review is to provide a comprehensive analysis of how animal models have influenced the development and refinement of advanced reproductive technologies for male fertility preservation, and to assess their future potential in bridging the gap between current practices and cutting-edge fertility techniques, particularly in addressing unique human male factor infertility.
Collapse
Affiliation(s)
- Pedro M. Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
- Instituto de Investigaciones en Biomedicina “One-Health”, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Miguel A. Gutierrez-Reinoso
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 050150, Ecuador;
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
| | - Manuel Garcia-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
| |
Collapse
|
4
|
Peñaherrera S, Ruiz C, Castañeda V, Livingston K, Barba D, Burzio VA, Caicedo A, Singh KK. Exploring the role of mitochondria transfer/transplant and their long-non-coding RNAs in regenerative therapies for skin aging. Mitochondrion 2023; 70:41-53. [PMID: 36921832 PMCID: PMC10400337 DOI: 10.1016/j.mito.2023.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Advancing age and environmental stressors lead to mitochondrial dysfunction in the skin, inducing premature aging, impaired regeneration, and greater risk of cancer. Cells rely on the communication between the mitochondria and the nucleus by tight regulation of long non-coding RNAs (lncRNAs) to avoid premature aging and maintain healthy skin. LncRNAs act as key regulators of cell proliferation, differentiation, survival, and maintenance of skin structure. However, research on how the lncRNAs are dysregulated during aging and due to stressors is needed to develop therapies to regenerate skin's function and structure. In this article, we discuss how age and environmental stressors may alter lncRNA homeodynamics, compromising cell survival and skin health, and how these factors may become inducers of skin aging. We describe skin cell types and how they depend on mitochondrial function and lncRNAs. We also provide a list of mitochondria localized and nuclear lncRNAs that can serve to better understand skin aging. Using bioinformatic prediction tools, we predict possible functions of lncRNAs based on their subcellular localization. We also search for experimentally determined protein interactions and the biological processes involved. Finally, we provide therapeutic strategies based on gene editing and mitochondria transfer/transplant (AMT/T) to restore lncRNA regulation and skin health. This article offers a unique perspective in understanding and defining the therapeutic potential of mitochondria localized lncRNAs (mt-lncRNAs) and AMT/T to treat skin aging and related diseases.
Collapse
Affiliation(s)
- Sebastian Peñaherrera
- Biotecnología, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
| | - Cristina Ruiz
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica Castañeda
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- PhD Program in Biomedicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Kathryn Livingston
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Purdue University, Weldon School of Biomedical Engineering, Indiana, United States
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Verónica A Burzio
- Department of Biological Sciences, Faculty of Life Sciences, Universidad Andrés Bello, Santiago, Chile
- Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Santiago, Chile
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador
- Mito-Act Research Consortium, Quito, Ecuador
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
- Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K. Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Caicedo A, Singh KK. Advancing mitochondria as a therapeutic agent. Mitochondrion 2023; 69:33-35. [PMID: 36657505 DOI: 10.1016/j.mito.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023]
Abstract
This article intends to provide an update of the needs in the field working in the artificial mitochondrial transfer/transplant (AMT/T), and an overview of the highlights from the articles in the special issue "Advances of Mitochondria as a therapeutic agent". In the last 4 decades, scientists have developed innovative therapeutic applications based on the AMT/T, inspired by the natural transfer of mitochondria between cells to repair cellular damage or treat diseases. The clinical application of AMT has become the priority for the field involving the replacement or augmentation of healthy mitochondria in the harmed tissue, especially in the treatment of organ ischemia-reperfusion injury. However, we remark in our article that key questions remain to be answered such as which one is the best isolation protocol, tissue or cell source for isolation, and others of great importance to move the field forward.
Collapse
Affiliation(s)
- Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Keshav K Singh
- Departments of Genetics, Dermatology and Pathology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|