1
|
Overton J, Velasquez A, Cruse A, Noble C, Burrow R, Sharma PC, Berlin WP, Brodell RT, Sontakke SP. Fatal Mucormycosis in a Diabetic Patient: A Case Report and Review of Diagnostic Challenges. Cureus 2024; 16:e69546. [PMID: 39416531 PMCID: PMC11483154 DOI: 10.7759/cureus.69546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2024] [Indexed: 10/19/2024] Open
Abstract
Mucormycosis (zygomycosis) is a severe and often fatal mycotic infection affecting primarily immunocompromised individuals. A 61-year-old female with type 2 diabetes mellitus and end-stage renal disease developed septic shock in association with mucormycosis. Despite antifungal treatment with liposomal amphotericin B, the patient's condition rapidly deteriorated, leading to death within 48 hours. This case underscores the aggressive nature of mucormycosis, highlighting the necessity for early diagnosis using advanced diagnostic tools and prompt treatment to improve patient outcomes.
Collapse
Affiliation(s)
- John Overton
- Medicine, University of Mississippi Medical Center, Jackson, USA
| | - Ariel Velasquez
- Pathology, University of Mississippi Medical Center, Jackson, USA
| | - Allison Cruse
- Dermatology and Pathology, University of Mississippi Medical Center, Jackson, USA
| | - Caitlin Noble
- Dermatology and Pathology, University of Mississippi Medical Center, Jackson, USA
| | - Robert Burrow
- Dermatology, University of Mississippi Medical Center, Jackson, USA
| | - Poonam C Sharma
- Pathology, University of Mississippi Medical Center, Jackson, USA
| | - William P Berlin
- Radiology, University of Mississippi Medical Center, Jackson, USA
| | - Robert T Brodell
- Dermatology, University of Mississippi Medical Center, Jackson, USA
| | - Sumit P Sontakke
- Medical Foundations, Ross University School of Medicine, St. Michael, BRB
| |
Collapse
|
2
|
Thanapaul RJRS, Alamneh YA, Finnegan DK, Antonic V, Abu-Taleb R, Czintos C, Boone D, Su W, Sajja VS, Getnet D, Roberds A, Walsh TJ, Bobrov AG. Development of a Combat-Relevant Murine Model of Wound Mucormycosis: A Platform for the Pre-Clinical Investigation of Novel Therapeutics for Wound-Invasive Fungal Diseases. J Fungi (Basel) 2024; 10:364. [PMID: 38786719 PMCID: PMC11122444 DOI: 10.3390/jof10050364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Wound-invasive fungal diseases (WIFDs), especially mucormycosis, have emerged as life-threatening infections during recent military combat operations. Many combat-relevant fungal pathogens are refractory to current antifungal therapy. Therefore, animal models of WIFDs are urgently needed to investigate new therapeutic solutions. Our study establishes combat-relevant murine models of wound mucormycosis using Rhizopus arrhizus and Lichtheimia corymbifera, two Mucorales species that cause wound mucormycosis worldwide. These models recapitulate the characteristics of combat-related wounds from explosions, including blast overpressure exposure, full-thickness skin injury, fascial damage, and muscle crush. The independent inoculation of both pathogens caused sustained infections and enlarged wounds. Histopathological analysis confirmed the presence of necrosis and fungal hyphae in the wound bed and adjacent muscle tissue. Semi-quantification of fungal burden by colony-forming units corroborated the infection. Treatment with liposomal amphotericin B, 30 mg/kg, effectively controlled R. arrhizus growth and significantly reduced residual fungal burden in infected wounds (p < 0.001). This study establishes the first combat-relevant murine model of wound mucormycosis, paving the way for developing and evaluating novel antifungal therapies against combat-associated WIFDs.
Collapse
Affiliation(s)
- Rex J. R. Samdavid Thanapaul
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- NRC Research Associateship Programs, National Academies of Sciences, Engineering, and Medicine, Washington, DC 20001, USA
| | - Yonas A. Alamneh
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Daniel K. Finnegan
- Veterinary Services Program, Pathology Department, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Vlado Antonic
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Rania Abu-Taleb
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Christine Czintos
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Dylan Boone
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Wanwen Su
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Venkatasivasai S. Sajja
- Blast Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Derese Getnet
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Ashleigh Roberds
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Thomas J. Walsh
- Departments of Medicine and Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA 23220, USA
| | - Alexander G. Bobrov
- Wound Infections Department, Bacterial Diseases Branch, Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
3
|
Smith JA, Quesada T, Alake G, Anger N. Transcontinental Dispersal of Nonendemic Fungal Pathogens through Wooden Handicraft Imports. mBio 2022; 13:e0107522. [PMID: 35766379 PMCID: PMC9426497 DOI: 10.1128/mbio.01075-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
This study examined the viability and diversity of fungi harbored in imported wooden handicraft products sold in six retail stores in Florida, United States. Despite being subjected to trade regulations that require various sterilization/fumigation protocols, our study demonstrates high survival and diversity of fungi in wood products originating from at least seven countries on three continents. Among these fungi were nonendemic plant and human pathogens, as well as mycotoxin producers. Several products that are sold for use in food preparation and consumption harbored a novel (to North America) plant and human pathogen, Paecilomyces formosus. In addition, a high number of species isolated were thermophilic and included halophilic species, suggesting adaptability and selection through current wood treatment protocols that utilize heat and/or fumigation with methyl-bromide. This research suggests that current federal guidelines for imports of wooden goods are not sufficient to avoid the transit of potential live pathogens and demonstrates the need to increase safeguards at both points of origin and entry for biosecurity against introduction from invasive fungal species in wood products. Future import regulations should consider living fungi, their tolerance to extreme conditions, and their potential survival in solid substrates. Mitigation efforts may require additional steps such as more stringent fumigation and/or sterilization strategies and limiting use of wood that has not been processed to remove bark and decay. IMPORTANCE This study, the first of its kind, demonstrates the risk of importation of nonendemic foreign fungi on wooden handicrafts into the United States despite the application of sanitation protocols. Previous risk assessments of imported wood products have focused on potential for introduction of invasive arthropods (and their fungal symbionts) or have focused on other classes of wood products (timber, wooden furniture, garden products, etc.). Little to no attention has been paid to wooden handicrafts and the fungal pathogens (of plants and humans) they may carry. Due to the large size and diversity of this market, the risk for introduction of potentially dangerous pathogens is significant as illustrated by the results of this study.
Collapse
Affiliation(s)
- Jason A. Smith
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Tania Quesada
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Gideon Alake
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Nicolas Anger
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Davies GE, Thornton CR. Development of a Monoclonal Antibody and a Serodiagnostic Lateral-Flow Device Specific to Rhizopus arrhizus (Syn. R. oryzae), the Principal Global Agent of Mucormycosis in Humans. J Fungi (Basel) 2022; 8:jof8070756. [PMID: 35887511 PMCID: PMC9325280 DOI: 10.3390/jof8070756] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/01/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Mucormycosis is a highly aggressive angio-invasive disease of humans caused by fungi in the zygomycete order, Mucorales. Though a number of different species can cause mucormycosis, the principal agent of the disease worldwide is Rhizopus arrhizus, which accounts for the majority of rhino-orbital-cerebral, pulmonary, and disseminated infections in immunocompromised individuals. It is also the main cause of life-threatening infections in patients with poorly controlled diabetes mellitus, and in corticosteroid-treated patients with SARS-CoV-2 infection, where it causes the newly described disease, COVID-19-associated mucormycosis (CAM). Diagnosis currently relies on non-specific CT, a lengthy and insensitive culture from invasive biopsy, and a time-consuming histopathology of tissue samples. At present, there are no rapid antigen tests for the disease that detect biomarkers of infection, and which allow point-of-care diagnosis. Here, we report the development of an IgG1 monoclonal antibody (mAb), KC9, which is specific to Rhizopus arrhizus var. arrhizus (syn. Rhizopus oryzae) and Rhizopus arrhizus var. delemar (Rhizopus delemar), and which binds to a 15 kDa extracellular polysaccharide (EPS) antigen secreted during hyphal growth of the pathogen. Using the mAb, we have developed a competitive lateral-flow device (LFD) that allows rapid (30 min) and sensitive (~50 ng/mL running buffer) detection of the EPS biomarker, and which is compatible with human serum (limit of detection of ~500 ng/mL) and bronchoalveolar lavage fluid (limit of detection of ~100 ng/mL). The LFD, therefore, provides a potential novel opportunity for the non-invasive detection of mucormycosis caused by Rhizopus arrhizus.
Collapse
Affiliation(s)
- Genna E. Davies
- ISCA Diagnostics Ltd., B12A, Hatherly Laboratories, Prince of Wales Road, Exeter EX4 4PS, UK;
| | - Christopher R. Thornton
- MRC Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
- Correspondence:
| |
Collapse
|
5
|
Maleitzke T, Stahnke K, Trampuz A, Märdian S. A case report of cutaneous mucormycosis of the hand after minor trauma in a patient with acute myeloid leukaemia. Trauma Case Rep 2019; 23:100221. [PMID: 31360744 PMCID: PMC6637271 DOI: 10.1016/j.tcr.2019.100221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2019] [Indexed: 11/23/2022] Open
Abstract
Background Mucormycosis is a rare but life-threatening infection, caused by fungi of the Mucorales order, which can be found in soil, rotting leaves or on animals. Through characteristic angioinvasive growth, infections with mucor spores can occur as a pulmonary, rhinocerebral or cutaneous form. Infections mainly affect immunosuppressed patients with a history of uncontrolled diabetes or haematological malignancies, among others. Treatment is multimodal and requires an immediate combination of intravenous amphotericin B therapy and serial surgical debridements. Only a limited number of cases of cutaneous mucormycosis of the hand have been documented and described previously. Case presentation We report a cutaneous mucormycosis in an elderly patient with a therapy-resistant acute myeloid leukaemia after a minor trauma on his right hand, sustained whilst gardening. The fungal infection was treated with serial radical debridements, vacuum-assisted negative-pressure wound closure technique and intravenous antifungals. Despite successful eradication of the fungal infection, a palliative open wound care concept was implemented during the terminal course of the patient's leukaemia. Conclusions Cutaneous mucormycosis is a rare but fulminant fungal infection mostly affecting immunosuppressed patients. Survival is possible when diagnosed and treated early, yet mortality rates remain high.
Collapse
Affiliation(s)
- Tazio Maleitzke
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,Julius Wolff Institute, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,Berlin Institute of Health (BIH), 10178 Berlin, Germany
| | - Katharina Stahnke
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sven Märdian
- Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
6
|
Primary Cutaneous Mucormycosis Caused by Rhizopus oryzae: A Case Report and Review of Literature. Mycopathologia 2016; 182:387-392. [DOI: 10.1007/s11046-016-0084-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/24/2016] [Indexed: 12/23/2022]
|