1
|
Theska T, Sommer RJ. Feeding-structure morphogenesis in "rhabditid" and diplogastrid nematodes is not controlled by a conserved genetic module. Evol Dev 2024; 26:e12471. [PMID: 38356318 DOI: 10.1111/ede.12471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Disentangling the evolution of the molecular processes and genetic networks that facilitate the emergence of morphological novelties is one of the main objectives in evolutionary developmental biology. Here, we investigated the evolutionary history of a gene regulatory network controlling the development of novel tooth-like feeding structures in diplogastrid nematodes. Focusing on NHR-1 and NHR-40, the two transcription factors that regulate the morphogenesis of these feeding structures in Pristionchus pacificus, we sought to determine whether they have a similar function in Caenorhabditis elegans, an outgroup species to the Diplogastridae which has typical "rhabditid" flaps instead of teeth. Contrary to our initial expectations, we found that they do not have a similar function. While both receptors are co-expressed in the tissues that produce the feeding structures in the two nematodes, genetic inactivation of either receptor had no impact on feeding-structure morphogenesis in C. elegans. Transcriptomic experiments revealed that NHR-1 and NHR-40 have highly species-specific regulatory targets. These results suggest two possible evolutionary scenarios: either the genetic module responsible for feeding-structure morphogenesis in Diplogastridae already existed in the last common ancestor of C. elegans and P. pacificus, and subsequently disintegrated in the former as NHR-1 and NHR-40 acquired new targets, or it evolved in conjunction with teeth in Diplogastridae. These findings indicate that feeding-structure morphogenesis is regulated by different genetic programs in P. pacificus and C. elegans, hinting at developmental systems drift during the flap-to-tooth transformation. Further research in other "rhabditid" species is needed to fully reconstruct the developmental genetic changes which facilitated the evolution of novel feeding structures in Diplogastridae.
Collapse
Affiliation(s)
- Tobias Theska
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen (MPI-B), Tübingen, Germany
| | - Ralf J Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen (MPI-B), Tübingen, Germany
| |
Collapse
|
2
|
Li Y, Osuma A, Correa E, Okebalama MA, Dao P, Gaylord O, Aburas J, Islam P, Brown AE, Kratsios P. Establishment and maintenance of motor neuron identity via temporal modularity in terminal selector function. eLife 2020; 9:59464. [PMID: 33001031 PMCID: PMC7529460 DOI: 10.7554/elife.59464] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/20/2020] [Indexed: 02/06/2023] Open
Abstract
Terminal selectors are transcription factors (TFs) that establish during development and maintain throughout life post-mitotic neuronal identity. We previously showed that UNC-3/Ebf, the terminal selector of C. elegans cholinergic motor neurons (MNs), acts indirectly to prevent alternative neuronal identities (Feng et al., 2020). Here, we globally identify the direct targets of UNC-3. Unexpectedly, we find that the suite of UNC-3 targets in MNs is modified across different life stages, revealing ‘temporal modularity’ in terminal selector function. In all larval and adult stages examined, UNC-3 is required for continuous expression of various protein classes (e.g. receptors, transporters) critical for MN function. However, only in late larvae and adults, UNC-3 is required to maintain expression of MN-specific TFs. Minimal disruption of UNC-3’s temporal modularity via genome engineering affects locomotion. Another C. elegans terminal selector (UNC-30/Pitx) also exhibits temporal modularity, supporting the potential generality of this mechanism for the control of neuronal identity.
Collapse
Affiliation(s)
- Yinan Li
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States
| | - Anthony Osuma
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States
| | - Edgar Correa
- Department of Neurobiology, University of Chicago, Chicago, United States.,Cell and Molecular Biology Program, University of Chicago, Chicago, United States
| | | | - Pauline Dao
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Olivia Gaylord
- Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, United States
| | - Jihad Aburas
- Department of Neurobiology, University of Chicago, Chicago, United States
| | - Priota Islam
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - André Ex Brown
- MRC London Institute of Medical Sciences, London, United Kingdom.,Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, United States.,Committee on Neurobiology, University of Chicago, Chicago, United States.,Cell and Molecular Biology Program, University of Chicago, Chicago, United States.,Committee on Development, Regeneration and Stem Cell Biology, University of Chicago, Chicago, United States.,The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, United States
| |
Collapse
|
3
|
Pimentel-Acosta CA, Ramírez-Salcedo J, Morales-Serna FN, Fajer-Ávila EJ, Chávez-Sánchez C, Lara HH, García-Gasca A. Molecular Effects of Silver Nanoparticles on Monogenean Parasites: Lessons from Caenorhabditis elegans. Int J Mol Sci 2020; 21:ijms21165889. [PMID: 32824343 PMCID: PMC7460582 DOI: 10.3390/ijms21165889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
The mechanisms of action of silver nanoparticles (AgNPs) in monogenean parasites of the genus Cichlidogyrus were investigated through a microarray hybridization approach using genomic information from the nematode Caenorhabditis elegans. The effects of two concentrations of AgNPs were explored, low (6 µg/L Ag) and high (36 µg/L Ag). Microarray analysis revealed that both concentrations of AgNPs activated similar biological processes, although by different mechanisms. Expression profiles included genes involved in detoxification, neurotoxicity, modulation of cell signaling, reproduction, embryonic development, and tegument organization as the main biological processes dysregulated by AgNPs. Two important processes (DNA damage and cell death) were mostly activated in parasites exposed to the lower concentration of AgNPs. To our knowledge, this is the first study providing information on the sub-cellular and molecular effects of exposure to AgNPs in metazoan parasites of fish.
Collapse
Affiliation(s)
- Citlalic A. Pimentel-Acosta
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
| | - Jorge Ramírez-Salcedo
- Unidad de Microarreglos, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico;
| | - Francisco Neptalí Morales-Serna
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
- CONACYT, Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico
| | - Emma J. Fajer-Ávila
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
| | - Cristina Chávez-Sánchez
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
| | - Humberto H. Lara
- Department of Biology and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Alejandra García-Gasca
- Centro de Investigación en Alimentación y Desarrollo, Unidad Mazatlán en Acuicultura y Manejo Ambiental, Mazatlán, Sinaloa 82112, Mexico; (C.A.P.-A.); (F.N.M.-S.); (E.J.F.-Á.); (C.C.-S.)
- Correspondence: ; Tel.: +52-66-9989-8700
| |
Collapse
|
4
|
Sieriebriennikov B, Sun S, Lightfoot JW, Witte H, Moreno E, Rödelsperger C, Sommer RJ. Conserved nuclear hormone receptors controlling a novel plastic trait target fast-evolving genes expressed in a single cell. PLoS Genet 2020; 16:e1008687. [PMID: 32282814 PMCID: PMC7179942 DOI: 10.1371/journal.pgen.1008687] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/23/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Environment shapes development through a phenomenon called developmental plasticity. Deciphering its genetic basis has potential to shed light on the origin of novel traits and adaptation to environmental change. However, molecular studies are scarce, and little is known about molecular mechanisms associated with plasticity. We investigated the gene regulatory network controlling predatory vs. non-predatory dimorphism in the nematode Pristionchus pacificus and found that it consists of genes of extremely different age classes. We isolated mutants in the conserved nuclear hormone receptor nhr-1 with previously unseen phenotypic effects. They disrupt mouth-form determination and result in animals combining features of both wild-type morphs. In contrast, mutants in another conserved nuclear hormone receptor nhr-40 display altered morph ratios, but no intermediate morphology. Despite divergent modes of control, NHR-1 and NHR-40 share transcriptional targets, which encode extracellular proteins that have no orthologs in Caenorhabditis elegans and result from lineage-specific expansions. An array of transcriptional reporters revealed co-expression of all tested targets in the same pharyngeal gland cell. Major morphological changes in this gland cell accompanied the evolution of teeth and predation, linking rapid gene turnover with morphological innovations. Thus, the origin of feeding plasticity involved novelty at the level of genes, cells and behavior.
Collapse
Affiliation(s)
- Bogdan Sieriebriennikov
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Shuai Sun
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - James W. Lightfoot
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eduardo Moreno
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
5
|
Bui LT, Ragsdale EJ. Multiple plasticity regulators reveal targets specifying an induced predatory form in nematodes. Mol Biol Evol 2019; 36:2387-2399. [PMID: 31364718 DOI: 10.1093/molbev/msz171] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/19/2019] [Accepted: 07/17/2019] [Indexed: 12/19/2022] Open
Abstract
The ability to translate a single genome into multiple phenotypes, or developmental plasticity, defines how phenotype derives from more than just genes. However, to study the evolutionary targets of plasticity and their evolutionary fates, we need to understand how genetic regulators of plasticity control downstream gene expression. Here, we have identified a transcriptional response specific to polyphenism (i.e., discrete plasticity) in the nematode Pristionchus pacificus. This species produces alternative resource-use morphs - microbivorous and predatory forms, differing in the form of their teeth, a morphological novelty - as influenced by resource availability. Transcriptional profiles common to multiple polyphenism-controlling genes in P. pacificus reveal a suite of environmentally sensitive loci, or ultimate target genes, that make up an induced developmental response. Additionally, in vitro assays show that one polyphenism regulator, the nuclear receptor (NR) NHR-40, physically binds to promoters with putative HNF4⍺ (the NR class including NHR-40) binding sites, suggesting this receptor may directly regulate genes that describe alternative morphs. Among differentially expressed genes were morph-limited genes, highlighting factors with putative "on-off" function in plasticity regulation. Further, predatory morph-biased genes included candidates - namely, all four P. pacificus homologs of Hsp70, which have HNF4⍺ motifs - whose natural variation in expression matches phenotypic differences among P. pacificus wild isolates. In summary, our study links polyphenism regulatory loci to the transcription producing alternative forms of a morphological novelty. Consequently, our findings establish a platform for determining how specific regulators of morph-biased genes may influence selection on plastic phenotypes.
Collapse
Affiliation(s)
- Linh T Bui
- Department of Biology, Indiana University, Bloomington, IN
| | | |
Collapse
|
6
|
Bui LT, Ivers NA, Ragsdale EJ. A sulfotransferase dosage-dependently regulates mouthpart polyphenism in the nematode Pristionchus pacificus. Nat Commun 2018; 9:4119. [PMID: 30297689 PMCID: PMC6175886 DOI: 10.1038/s41467-018-05612-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/11/2018] [Indexed: 01/26/2023] Open
Abstract
Polyphenism, the extreme form of developmental plasticity, is the ability of a genotype to produce discrete morphologies matched to alternative environments. Because polyphenism is likely to be under switch-like molecular control, a comparative genetic approach could reveal the molecular targets of plasticity evolution. Here we report that the lineage-specific sulfotransferase SEUD-1, which responds to environmental cues, dosage-dependently regulates polyphenism of mouthparts in the nematode Pristionchus pacificus. SEUD-1 is expressed in cells producing dimorphic morphologies, thereby integrating an intercellular signalling mechanism at its ultimate target. Additionally, multiple alterations of seud-1 support it as a potential target for plasticity evolution. First, a recent duplication of seud-1 in a sister species reveals a direct correlation between genomic dosage and polyphenism threshold. Second, inbreeding to produce divergent polyphenism thresholds resulted in changes in transcriptional dosage of seud-1. Our study thus offers a genetic explanation for how plastic responses evolve.
Collapse
Affiliation(s)
- Linh T Bui
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN, 47405, USA
| | - Nicholas A Ivers
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN, 47405, USA
| | - Erik J Ragsdale
- Department of Biology, Indiana University, 915 E. 3rd St., Bloomington, IN, 47405, USA.
| |
Collapse
|
7
|
Bodofsky S, Koitz F, Wightman B. CONSERVED AND EXAPTED FUNCTIONS OF NUCLEAR RECEPTORS IN ANIMAL DEVELOPMENT. NUCLEAR RECEPTOR RESEARCH 2017; 4:101305. [PMID: 29333434 PMCID: PMC5761748 DOI: 10.11131/2017/101305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor gene family includes 18 members that are broadly conserved among multiple disparate animal phyla, indicating that they trace their evolutionary origins to the time at which animal life arose. Typical nuclear receptors contain two major domains: a DNA-binding domain and a C-terminal domain that may bind a lipophilic hormone. Many of these nuclear receptors play varied roles in animal development, including coordination of life cycle events and cellular differentiation. The well-studied genetic model systems of Drosophila, C. elegans, and mouse permit an evaluation of the extent to which nuclear receptor function in development is conserved or exapted (repurposed) over animal evolution. While there are some specific examples of conserved functions and pathways, there are many clear examples of exaptation. Overall, the evolutionary theme of exaptation appears to be favored over strict functional conservation. Despite strong conservation of DNA-binding domain sequences and activity, the nuclear receptors prove to be highly-flexible regulators of animal development.
Collapse
Affiliation(s)
- Shari Bodofsky
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Francine Koitz
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Bruce Wightman
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| |
Collapse
|
8
|
The Nuclear Hormone Receptor NHR-40 Acts Downstream of the Sulfatase EUD-1 as Part of a Developmental Plasticity Switch in Pristionchus. Curr Biol 2016; 26:2174-9. [PMID: 27451902 DOI: 10.1016/j.cub.2016.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/19/2016] [Accepted: 06/14/2016] [Indexed: 11/21/2022]
Abstract
Developmental plasticity, the ability of one genotype to produce distinct phenotypes in different environments, has been suggested to facilitate phenotypic diversification, and several examples in plants and animals support its macroevolutionary potential [1-8]. However, little is known about associated molecular mechanisms, because environmental effects on development are difficult to study by laboratory approaches. One promising system is the mouth dimorphism of the nematode Pristionchus pacificus [9-12]. Following an irreversible decision in larval development, these nematodes form moveable teeth that occur in either of two discrete morphs. The "eurystomatous" (Eu) form has a wide mouth and two teeth, allowing predatory feeding on other nematodes. In contrast, the alternative ("stenostomatous"; St) form has diminutive mouthparts that largely constrain its diet to microbes. The sulfatase EUD-1 was previously discovered to execute a polyphenism switch based on dosage of functional alleles [13] and confirmed a prediction of evolutionary theory about how developmental switches control plasticity [1, 3]. However, the genetic context of this single gene, and hence the molecular complexity of switch mechanisms, was previously unknown. Here we use a suppressor screen to identify factors downstream of eud-1 in mouth-form regulation. We isolated three dominant, X-linked mutants in the nuclear hormone receptor gene nhr-40 that are haploinsufficient. Both eud-1 nhr-40 double and nhr-40 single mutants are all Eu, whereas transgenic overexpression of nhr-40 does not restore the wild-type phenotype but instead results in nearly all-St lines. Thus, NHR-40 is part of a developmental switch, suggesting that switch mechanisms controlling plasticity consist of multi-component hormonal signaling systems.
Collapse
|
9
|
Watson E, Walhout AJM. Caenorhabditis elegans metabolic gene regulatory networks govern the cellular economy. Trends Endocrinol Metab 2014; 25:502-8. [PMID: 24731597 PMCID: PMC4178166 DOI: 10.1016/j.tem.2014.03.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/13/2014] [Accepted: 03/14/2014] [Indexed: 11/24/2022]
Abstract
Diet greatly impacts metabolism in health and disease. In response to the presence or absence of specific nutrients, metabolic gene regulatory networks sense the metabolic state of the cell and regulate metabolic flux accordingly, for instance by the transcriptional control of metabolic enzymes. Here, we discuss recent insights regarding metazoan metabolic regulatory networks using the nematode Caenorhabditis elegans as a model, including the modular organization of metabolic gene regulatory networks, the prominent impact of diet on the transcriptome and metabolome, specialized roles of nuclear hormone receptors (NHRs) in responding to dietary conditions, regulation of metabolic genes and metabolic regulators by miRNAs, and feedback between metabolic genes and their regulators.
Collapse
Affiliation(s)
- Emma Watson
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, 55 North Lake Ave, Worcester, MA, 01655, USA
| | - Albertha J M Walhout
- Program in Systems Biology, Program in Molecular Medicine, University of Massachusetts Medical School, 55 North Lake Ave, Worcester, MA, 01655, USA.
| |
Collapse
|
10
|
Nuclear receptors in nematode development: Natural experiments made by a phylum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:224-37. [PMID: 24984201 DOI: 10.1016/j.bbagrm.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/21/2022]
Abstract
The development of complex multicellular organisms is dependent on regulatory decisions that are necessary for the establishment of specific differentiation and metabolic cellular states. Nuclear receptors (NRs) form a large family of transcription factors that play critical roles in the regulation of development and metabolism of Metazoa. Based on their DNA binding and ligand binding domains, NRs are divided into eight NR subfamilies from which representatives of six subfamilies are present in both deuterostomes and protostomes indicating their early evolutionary origin. In some nematode species, especially in Caenorhabditis, the family of NRs expanded to a large number of genes strikingly exceeding the number of NR genes in vertebrates or insects. Nematode NRs, including the multiplied Caenorhabditis genes, show clear relation to vertebrate and insect homologues belonging to six of the eight main NR subfamilies. This review summarizes advances in research of nematode NRs and their developmental functions. Nematode NRs can reveal evolutionarily conserved mechanisms that regulate specific developmental and metabolic processes as well as new regulatory adaptations. They represent the results of a large number of natural experiments with structural and functional potential of NRs for the evolution of the phylum. The conserved and divergent character of nematode NRs adds a new dimension to our understanding of the general biology of regulation by NRs. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|
11
|
Vohanka J, Simecková K, Machalová E, Behenský F, Krause MW, Kostrouch Z, Kostrouchová M. Diversification of fasting regulated transcription in a cluster of duplicated nuclear hormone receptors in C. elegans. Gene Expr Patterns 2010; 10:227-36. [PMID: 20460175 DOI: 10.1016/j.gep.2010.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 03/26/2010] [Accepted: 05/03/2010] [Indexed: 11/18/2022]
Abstract
The genome of Caenorhabditis elegans encodes more than 280 nuclear hormone receptors (NHRs) in contrast to the 48 NHRs in humans and 18 NHRs in Drosophila. The majority of the C. elegans NHRs are categorized as supplementary nuclear receptors (supnrs) that evolved by successive duplications of a single ancestral gene. The evolutionary pressures that lead to the expansion of NHRs in nematodes, as well as the function of the majority of supnrs, are not known. Here, we have studied the expression of seven genes organized in a cluster on chromosome V: nhr-206, nhr-208, nhr-207, nhr-209, nhr-154, nhr-153 and nhr-136. Reverse transcription-quantitative PCR and analyses using transgenic lines carrying GFP fusion genes with their putative promoters revealed that all seven genes of this cluster are expressed and five have partially overlapping expression patterns including in the pharynx, intestine, certain neurons, the anal sphincter muscle, and male specific cells. Four genes in this cluster are conserved between C. elegans and Caenorhabditis briggsae whereas three genes are present only in C. elegans, the apparent result of a relatively recent expansion. Interestingly, we find that a subset of the conserved and non-conserved genes in this cluster respond transcriptionally to fasting in tissue-specific patterns. Our results reveal the diversification of the temporal, spatial, and metabolic gene expression patterns coupled with evolutionary drift within supnr family members.
Collapse
Affiliation(s)
- Jaroslav Vohanka
- Laboratory of Molecular Biology and Genetics, Institute of Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
12
|
Capra EJ, Skrovanek SM, Kruglyak L. Comparative developmental expression profiling of two C. elegans isolates. PLoS One 2008; 3:e4055. [PMID: 19116648 PMCID: PMC2605249 DOI: 10.1371/journal.pone.0004055] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 12/01/2008] [Indexed: 02/01/2023] Open
Abstract
Gene expression is known to change during development and to vary among genetically diverse strains. Previous studies of temporal patterns of gene expression during C. elegans development were incomplete, and little is known about how these patterns change as a function of genetic background. We used microarrays that comprehensively cover known and predicted worm genes to compare the landscape of genetic variation over developmental time between two isolates of C. elegans. We show that most genes vary in expression during development from egg to young adult, many genes vary in expression between the two isolates, and a subset of these genes exhibit isolate-specific changes during some developmental stages. This subset is strongly enriched for genes with roles in innate immunity. We identify several novel motifs that appear to play a role in regulating gene expression during development, and we propose functional annotations for many previously unannotated genes. These results improve our understanding of gene expression and function during worm development and lay the foundation for linkage studies of the genetic basis of developmental variation in gene expression in this important model organism.
Collapse
Affiliation(s)
- Emily J. Capra
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Sonja M. Skrovanek
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey, United States of America
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
13
|
Pohludka M, Simeckova K, Vohanka J, Yilma P, Novak P, Krause MW, Kostrouchova M, Kostrouch Z. Proteomic analysis uncovers a metabolic phenotype in C. elegans after nhr-40 reduction of function. Biochem Biophys Res Commun 2008; 374:49-54. [PMID: 18616929 DOI: 10.1016/j.bbrc.2008.06.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 06/24/2008] [Indexed: 11/19/2022]
Abstract
Caenorhabditis elegans has an unexpectedly large number (284) of genes encoding nuclear hormone receptors, most of which are nematode-specific and are of unknown function. We have exploited comparative two-dimensional chromatography of synchronized cultures of wild type C. elegans larvae and a mutant in nhr-40 to determine if proteomic approaches will provide additional insight into gene function. Chromatofocusing, followed by reversed-phase chromatography and mass spectrometry, identified altered chromatographic patterns for a set of proteins, many of which function in muscle and metabolism. Prompted by the proteomic analysis, we find that the penetrance of the developmental phenotypes in the mutant is enhanced at low temperatures and by food restriction. The combination of our phenotypic and proteomic analysis strongly suggests that NHR-40 provides a link between metabolism and muscle development. Our results highlight the utility of comparative two-dimensional chromatography to provide a relatively rapid method to gain insight into gene function.
Collapse
Affiliation(s)
- Michal Pohludka
- Charles University in Prague, 1st Faculty of Medicine, Institute of Inherited Metabolic Disorders, Laboratory of Molecular Pathology, Ke Karlovu 2, CZ-128 01 Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Fox RM, Watson JD, Von Stetina SE, McDermott J, Brodigan TM, Fukushige T, Krause M, Miller DM. The embryonic muscle transcriptome of Caenorhabditis elegans. Genome Biol 2008; 8:R188. [PMID: 17848203 PMCID: PMC2375026 DOI: 10.1186/gb-2007-8-9-r188] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 09/12/2007] [Indexed: 11/10/2022] Open
Abstract
Fluorescence activated cell sorting and microarray profiling were used to identify 1,312 expressed genes that are enriched in myo-3::GFP-positive muscle cells of Caenorhabditis elegans. Background The force generating mechanism of muscle is evolutionarily ancient; the fundamental structural and functional components of the sarcomere are common to motile animals throughout phylogeny. Recent evidence suggests that the transcription factors that regulate muscle development are also conserved. Thus, a comprehensive description of muscle gene expression in a simple model organism should define a basic muscle transcriptome that is also found in animals with more complex body plans. To this end, we applied microarray profiling of Caenorhabtidis elegans cells (MAPCeL) to muscle cell populations extracted from developing C. elegans embryos. Results We used fluorescence-activated cell sorting to isolate myo-3::green fluorescent protein (GFP) positive muscle cells, and their cultured derivatives, from dissociated early C. elegans embryos. Microarray analysis identified 7,070 expressed genes, 1,312 of which are enriched in the myo-3::GFP positive cell population relative to the average embryonic cell. The muscle enriched gene set was validated by comparisons with known muscle markers, independently derived expression data, and GFP reporters in transgenic strains. These results confirm the utility of MAPCeL for cell type specific expression profiling and reveal that 60% of these transcripts have human homologs. Conclusion This study provides a comprehensive description of gene expression in developing C. elegans embryonic muscle cells. The finding that more than half of these muscle enriched transcripts encode proteins with human homologs suggests that mutant analysis of these genes in C. elegans could reveal evolutionarily conserved models of muscle gene function, with ready application to human muscle pathologies.
Collapse
Affiliation(s)
- Rebecca M Fox
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21Ave. S., Nashville, TN 37232-8240, USA
- Current address: Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205, USA
| | - Joseph D Watson
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21Ave. S., Nashville, TN 37232-8240, USA
- Graduate Program in Neuroscience, Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232-8548, USA
| | - Stephen E Von Stetina
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21Ave. S., Nashville, TN 37232-8240, USA
| | - Joan McDermott
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room B1-04, Bethesda, MD 20892, USA
| | - Thomas M Brodigan
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room B1-04, Bethesda, MD 20892, USA
| | - Tetsunari Fukushige
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room B1-04, Bethesda, MD 20892, USA
| | - Michael Krause
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room B1-04, Bethesda, MD 20892, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, 465 21Ave. S., Nashville, TN 37232-8240, USA
- Graduate Program in Neuroscience, Center for Molecular Neuroscience, Vanderbilt University, Nashville, TN 37232-8548, USA
| |
Collapse
|