1
|
Spinner MA, Pinter K, Drerup CM, Herman TG. A Conserved Role for Vezatin Proteins in Cargo-Specific Regulation of Retrograde Axonal Transport. Genetics 2020; 216:431-445. [PMID: 32788307 PMCID: PMC7536845 DOI: 10.1534/genetics.120.303499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022] Open
Abstract
Active transport of organelles within axons is critical for neuronal health. Retrograde axonal transport, in particular, relays neurotrophic signals received by axon terminals to the nucleus and circulates new material among enpassant synapses. A single motor protein complex, cytoplasmic dynein, is responsible for nearly all retrograde transport within axons: its linkage to and transport of diverse cargos is achieved by cargo-specific regulators. Here, we identify Vezatin as a conserved regulator of retrograde axonal transport. Vertebrate Vezatin (Vezt) is required for the maturation and maintenance of cell-cell junctions and has not previously been implicated in axonal transport. However, a related fungal protein, VezA, has been shown to regulate retrograde transport of endosomes in hyphae. In a forward genetic screen, we identified a loss-of-function mutation in the Drosophila vezatin-like (vezl) gene. We here show that vezl loss prevents a subset of endosomes, including signaling endosomes containing activated BMP receptors, from initiating transport out of motor neuron terminal boutons. vezl loss also decreases the transport of endosomes and dense core vesicles, but not mitochondria, within axon shafts. We disrupted vezt in zebrafish and found that vezt loss specifically impairs the retrograde axonal transport of late endosomes, causing their accumulation in axon terminals. Our work establishes a conserved, cargo-specific role for Vezatin proteins in retrograde axonal transport.
Collapse
Affiliation(s)
- Michael A Spinner
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| | - Katherine Pinter
- Unit on Neuronal Cell Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Catherine M Drerup
- Unit on Neuronal Cell Biology, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Tory G Herman
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
2
|
Koppel N, Friese MB, Cardasis HL, Neubert TA, Burden SJ. Vezatin is required for the maturation of the neuromuscular synapse. Mol Biol Cell 2019; 30:2571-2583. [PMID: 31411944 PMCID: PMC6740198 DOI: 10.1091/mbc.e19-06-0313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Key genes, such as Agrin, Lrp4, and MuSK, are required for the initial formation, subsequent maturation, and long-term stabilization of mammalian neuromuscular synapses. Additional molecules are thought to function selectively during the evolution and stabilization of these synapses, but these molecular players are largely unknown. Here, we used mass spectrometry to identify vezatin, a two-pass transmembrane protein, as an acetylcholine receptor (AChR)–associated protein, and we provide evidence that vezatin binds directly to AChRs. We show that vezatin is dispensable for the formation of synapses but plays a later role in the emergence of a topologically complex and branched shape of the synapse, as well as the stabilization of AChRs. In addition, neuromuscular synapses in vezatin mutant mice display premature signs of deterioration, normally found only during aging. Thus, vezatin has a selective role in the structural elaboration and postnatal maturation of murine neuromuscular synapses.
Collapse
Affiliation(s)
- Natasha Koppel
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | - Matthew B Friese
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | - Helene L Cardasis
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | - Thomas A Neubert
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| | - Steven J Burden
- Helen L. and Martin S. Kimmel Center for Biology and Medicine, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
3
|
Kwon J, Park S, Seong MJ, Choi I, Kim NH. Cytoplasmic polyadenylation element binding protein 2 (CPEB2) is required for tight-junction assembly for establishment of porcine trophectoderm epithelium. Reprod Fertil Dev 2019; 31:412-419. [DOI: 10.1071/rd18098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/27/2018] [Indexed: 11/23/2022] Open
Abstract
Cytoplasmic polyadenylation element binding protein (CPEB) is an RNA-binding protein that promotes elongation of poly(A) tails and regulates mRNA translation. CPEB depletion in mammary epithelium is known to disrupt tight-junction (TJ) assembly via mislocalisation of tight junction protein 1 (TJP1), but the role of CPEB in the biological functions associated with TJs has not yet been studied. The objective of this study was to investigate the roles of CPEB2 during porcine parthenote development. CPEB2 was detected in both the nuclei and apical cytoplasm at the 4- and 8-cell stages and was localised to cell–cell contact after the initiation of the morula stage. Its depletion led to retarded blastocyst formation caused by impaired TJ assembly. Moreover, transcription of TJ-associated genes, including TJP1, Coxsackie virus and adenovirus receptor (CXADR) and occludin (OCLN), was not affected, but the corresponding proteins were not properly localised at the apical cell membrane in morulae, suggesting that CPEB2 confers mRNA stability or determines subcellular localisation for translation. Remarkably reduced relative levels of TJP1 transcripts bearing the 3′-untranslated region were noted, indicating that CPEB2 mediates TJP1 mRNA stability. In conclusion, our findings demonstrate that because of its regulation of TJP1, CPEB2 is required for TJ assembly during porcine blastocyst development.
Collapse
|
4
|
Holdsworth-Carson SJ, Fung JN, Luong HTT, Sapkota Y, Bowdler LM, Wallace L, Teh WT, Powell JE, Girling JE, Healey M, Montgomery GW, Rogers PAW. Endometrial vezatin and its association with endometriosis risk. Hum Reprod 2016; 31:999-1013. [PMID: 27005890 DOI: 10.1093/humrep/dew047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
STUDY QUESTION Do endometriosis risk-associated single nucleotide polymorphisms (SNPs) found at the 12q22 locus have effects on vezatin ( ITALIC! VEZT) expression? SUMMARY ANSWER The original genome-wide association study (GWAS) SNP (rs10859871), and other newly identified association signals, demonstrate strong evidence for ITALIC! cis-expression quantitative trait loci (eQTL) effects on ITALIC! VEZT expression. WHAT IS KNOWN ALREADY GWAS have identified several disease-risk loci (SNPs) associated with endometriosis. The SNP rs10859871 is located within the ITALIC! VEZT gene. ITALIC! VEZT expression is altered in the endometrium of endometriosis patients and is an excellent candidate for having a causal role in endometriosis. Most of the SNPs identified from GWAS are not located within the coding region of the genome. However, they are likely to have an effect on the regulation of gene expression. Genetic variants that affect levels of gene expression are called expression quantitative trait loci (eQTL). STUDY DESIGN, SIZE, DURATION Samples for genotyping and ITALIC! VEZT variant screening were drawn from women recruited for genetic studies in Australia/New Zealand and women undergoing surgery in a tertiary care centre. Coding variants for ITALIC! VEZT were screened in blood from 100 unrelated individuals (endometriosis-dense families) from the QIMR Berghofer Medical Research Institute dataset. SNPs at the 12q22 locus were imputed and reanalysed for their association with endometriosis. Reanalysis of endometriosis risk-association was performed on a final combined Australian dataset of 2594 cases and 4496 controls. Gene expression was performed on 136 endometrial samples. eQTL analysis in whole blood was performed on 862 individuals from the Brisbane Systems Genetics Study. Endometrial tissue-specific eQTL analysis was performed on 122 samples (eutopic endometrium) collected following laparoscopic surgery. VEZT protein expression studies employed ITALIC! n = 56 (western blotting) and ITALIC! n = 42 (immunohistochemistry) endometrial samples. PARTICIPANTS/MATERIALS, SETTING, METHODS The women recruited for this study provided blood and/or endometrial tissue samples in a hospital setting. Genomic DNA was screened for common and coding variants. SNPs of interest in the 12q22 region were genotyped using Agena MassARRAY technology or Taqman SNP genotyping assay. Gene expression profiles from RNA extracted from blood and endometrial tissue samples were generated using Illumina whole-genome expression chips (Human HT-12 v4.0). Whole protein extracted from endometrium was used for VEZT western blots, and paraffin sections of endometrium were employed for VEZT immunohistochemistry semi-quantitative analysis. MAIN RESULTS AND THE ROLE OF CHANCE A total of 11 coding variants of ITALIC! VEZT (including one novel variant) were identified from an endometriosis-dense cohort. Polymorphic coding and imputed SNPs were combined with previous GWAS data to reanalyse the endometriosis risk association of the 12q22 region. The disease association signal at 12q22 was due to coding variants in ITALIC! VEZT or ITALIC! FGD6 (FYVE, RhoGEF and PH domain-containing 6) and SNPs with the strongest signals were either intronic or intergenic. We found strong evidence for ITALIC! VEZT cis-eQTLs with the sentinel SNP (rs10859871) in blood and endometrium, where the endometriosis risk allele (C) was associated with an increase in ITALIC! VEZT expression. We could not demonstrate this genotype-specific effect on VEZT protein expression in endometrium. However, we did observe a menstrual cycle stage specific increase in VEZT protein expression in endometrial glands, specific to the secretory phase ( ITALIC! P = 2.0 × 10(-4)). LIMITATIONS, REASONS FOR CAUTION In comparison to the blood sample datasets, the study numbers of endometrial tissues were substantially reduced. Protein studies failed to complement RNA results, also likely a reflection of the low study numbers in these experiments. ITALIC! In silico prediction tools used in this investigation are typically based on cell lines different to our tissues of interest, thus any functional annotations drawn from these approaches should be considered carefully. Therefore, functional studies on VEZT and related pathway components are still warranted to unequivocally implicate a causal role for VEZT in endometriosis pathophysiology. WIDER IMPLICATIONS OF THE FINDINGS GWAS have proven to be very valuable tools for deciphering complex diseases. Endometriosis is a text-book example of a complex disease, involving genetic, lifestyle and environmental influences. Our focused investigation of the 12q22 region validates an association with increased endometriosis risk. Endometriosis risk SNPs (including rs10859871) located within this locus demonstrated evidence for ITALIC! cis-eQTLs on ITALIC! VEZT expression. By examining women who possess an enhanced genetic risk of developing endometriosis, we have identified an effect on ITALIC! VEZT expression and therefore a potential gene/gene pathway in endometriosis disease establishment and development. STUDY FUNDING/COMPETING INTERESTS Funding for this work was provided by NHMRC Project Grants GNT1012245, GNT1026033, GNT1049472 and GNT1046880. G.W.M. is supported by the NHMRC Fellowship scheme (GNT1078399). S.J.H.-C. is supported by the J.N. Peters Bequest Fellowship. The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Sarah J Holdsworth-Carson
- Department of Obstetrics and Gynaecology, University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Level 7, 20 Flemington Road, Parkville, Victoria 3052, Australia
| | - Jenny N Fung
- Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Hien T T Luong
- Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Yadav Sapkota
- Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Lisa M Bowdler
- Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Leanne Wallace
- Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Wan Tinn Teh
- Department of Obstetrics and Gynaecology, University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Level 7, 20 Flemington Road, Parkville, Victoria 3052, Australia
| | - Joseph E Powell
- The Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia Centre for Neurogenetics and Statistical Genomics, Queensland Brain Institute, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jane E Girling
- Department of Obstetrics and Gynaecology, University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Level 7, 20 Flemington Road, Parkville, Victoria 3052, Australia
| | - Martin Healey
- Department of Obstetrics and Gynaecology, University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Level 7, 20 Flemington Road, Parkville, Victoria 3052, Australia
| | - Grant W Montgomery
- Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4029, Australia
| | - Peter A W Rogers
- Department of Obstetrics and Gynaecology, University of Melbourne, Gynaecology Research Centre, Royal Women's Hospital, Level 7, 20 Flemington Road, Parkville, Victoria 3052, Australia
| |
Collapse
|
5
|
VEZT, a novel putative tumor suppressor, suppresses the growth and tumorigenicity of gastric cancer. PLoS One 2013; 8:e74409. [PMID: 24069310 PMCID: PMC3775783 DOI: 10.1371/journal.pone.0074409] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 08/01/2013] [Indexed: 01/02/2023] Open
Abstract
Vezatin (VEZT), an adherens junctions transmembrane protein, was identified as a putative tumor suppressor in our previous study. However, the role of VEZT in tumorigenesis remains elusive. We aimed to clarify its epigenetic regulation and biological functions in gastric cancer. In this study, we show that the expression level of VEZT is involved in lymphatic metastasis, depth of cancer invasion and TNM stage in 104 gastric cancer patients. Bisulfate sequencing polymerase chain reaction (BSP) methods showed that VEZT was hypermethylated in tissues and corresponding blood of gastric cancer patients compared with healthy controls. Helicobacter pylori (H. pylori) infection induces the methylation and silencing of VEZT in GES-1 cells. Restoring VEZT expression in MKN-45 and NCI-N87 gastric cancer cells inhibited growth, invasion and tumorigenesis in vitro and in vivo. Global microarray analysis was applied to analyze the molecular basis of the biological functions of VEZT after VEZT transfection combined with real-time PCR and chromatin immunoprecipitation assay. G protein-coupled receptor 56(GPR56), cell growth, cell division cycle 42(CDC42), migration/invasion and transcription factor 19(TCF19), cell cycle progression, were identified as direct VEZT target genes. TCF19, a novel target of VEZT, was functionally validated. Overexpression of TCF19 in MKN-45 cells increased cell cycle progress and growth ability. This study provides novel insight into the regulation of the VEZT gene, which could represent a potential target for therapeutic anti-cancer strategies.
Collapse
|
6
|
Vezatin is essential for dendritic spine morphogenesis and functional synaptic maturation. J Neurosci 2012; 32:9007-22. [PMID: 22745500 DOI: 10.1523/jneurosci.3084-11.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Vezatin is an integral membrane protein associated with cell-cell adhesion complex and actin cytoskeleton. It is expressed in the developing and mature mammalian brain, but its neuronal function is unknown. Here, we show that Vezatin localizes in spines in mature mouse hippocampal neurons and codistributes with PSD95, a major scaffolding protein of the excitatory postsynaptic density. Forebrain-specific conditional ablation of Vezatin induced anxiety-like behavior and impaired cued fear-conditioning memory response. Vezatin knock-down in cultured hippocampal neurons and Vezatin conditional knock-out in mice led to a significantly increased proportion of stubby spines and a reduced proportion of mature dendritic spines. PSD95 remained tethered to presynaptic terminals in Vezatin-deficient hippocampal neurons, suggesting that the reduced expression of Vezatin does not compromise the maintenance of synaptic connections. Accordingly, neither the amplitude nor the frequency of miniature EPSCs was affected in Vezatin-deficient hippocampal neurons. However, the AMPA/NMDA ratio of evoked EPSCs was reduced, suggesting impaired functional maturation of excitatory synapses. These results suggest a role of Vezatin in dendritic spine morphogenesis and functional synaptic maturation.
Collapse
|
7
|
Jia Y, Viswakarma N, Crawford SE, Sarkar J, Sambasiva Rao M, Karpus WJ, Kanwar YS, Zhu YJ, Reddy JK. Early embryonic lethality of mice with disrupted transcription cofactor PIMT/NCOA6IP/Tgs1 gene. Mech Dev 2012; 129:193-207. [PMID: 22982455 DOI: 10.1016/j.mod.2012.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Revised: 08/09/2012] [Accepted: 08/27/2012] [Indexed: 11/29/2022]
Abstract
PIMT (also known as PIPMT/NCOA6IP/Tgs1), first isolated as a transcription coactivator PRIP (NCOA6)-interacting 96-kDa protein with RNA-binding property, possesses RNA methyltransferase activity. As a transcription coactivator binding protein, PIMT enhances the nuclear receptor transcriptional activity and its methyltransferase property is involved in the formation of the 2,2,7-trimethylguanosine cap of non-coding small RNAs, but the in vivo functions of this gene have not been fully explored. To elucidate the biological functions, we used gene targeting to generate mice with a disrupted PIMT/Tgs1 gene. Disruption of PIMT gene results in early embryonic lethality due to impairment of development around the blastocyst and uterine implantation stages. We show that PIMT is expressed in all cells of the E3.5day blastocyst in the mouse. PIMT null mutation abolished PIMT expression in all cells of the blastocyst and caused a reduction in the expression of Oct4 and Nanog transcription factor proteins in the E3.5 blastocyst resulting in the near failure to form inner cell mass (ICM). With conditional deletion of PIMT gene, mouse embryonic fibroblasts (MEFs) exhibit defective wound healing in the scratch assay and a reduction in cell proliferation due to decreased G₀/G₁ transition and G₂/M phase cell cycle arrest. We conclude that PIMT/NCOA6IP, which is expressed in all cells of the 3.5 day stage blastocyst, is indispensable for early embryonic development.
Collapse
Affiliation(s)
- Yuzhi Jia
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Green KJ, Getsios S, Troyanovsky S, Godsel LM. Intercellular junction assembly, dynamics, and homeostasis. Cold Spring Harb Perspect Biol 2010; 2:a000125. [PMID: 20182611 DOI: 10.1101/cshperspect.a000125] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intercellular anchoring junctions are highly specialized regions of the plasma membrane where members of the cadherin family of transmembrane adhesion molecules on opposing cells interact through their extracellular domains, and through their cytoplasmic domains serve as a platform for organizing cytoskeletal anchors and remodelers. Here we focus on assembly of so-called "anchoring" or "adhering" junctions-adherens junctions (AJs) and desmosomes (DSMs), which associate with actin and intermediate filaments, respectively. We will examine how the assembly and function of AJs and DSMs are intimately connected during embryogenesis and in adult cells and tissues, and in some cases even form specialized "mixed" junctions. We will explore signaling and trafficking machineries that drive assembly and remodeling and how these mechanisms are co-opted in human disease.
Collapse
Affiliation(s)
- Kathleen J Green
- Northwestern University Feinberg School of Medicine, Department of Pathology, R.H. Lurie Comprehensive Cancer Center, 303 E. Chicago Ave. Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
9
|
Bahloul A, Simmler MC, Michel V, Leibovici M, Perfettini I, Roux I, Weil D, Nouaille S, Zuo J, Zadro C, Licastro D, Gasparini P, Avan P, Hardelin JP, Petit C. Vezatin, an integral membrane protein of adherens junctions, is required for the sound resilience of cochlear hair cells. EMBO Mol Med 2010; 1:125-38. [PMID: 20049712 PMCID: PMC3378116 DOI: 10.1002/emmm.200900015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Loud sound exposure is a significant cause of hearing loss worldwide. We asked whether a lack of vezatin, an ubiquitous adherens junction protein, could result in noise-induced hearing loss. Conditional mutant mice bearing non-functional vezatin alleles only in the sensory cells of the inner ear (hair cells) indeed exhibited irreversible hearing loss after only one minute exposure to a 105 dB broadband sound. In addition, mutant mice spontaneously underwent late onset progressive hearing loss and vestibular dysfunction related to substantial hair cell death. We establish that vezatin is an integral membrane protein with two adjacent transmembrane domains, and cytoplasmic N- and C-terminal regions. Late recruitment of vezatin at junctions between MDCKII cells indicates that the protein does not play a role in the formation of junctions, but rather participates in their stability. Moreover, we show that vezatin directly interacts with radixin in its actin-binding conformation. Accordingly, we provide evidence that vezatin associates with actin filaments at cell–cell junctions. Our results emphasize the overlooked role of the junctions between hair cells and their supporting cells in the auditory epithelium resilience to sound trauma.
Collapse
Affiliation(s)
- Amel Bahloul
- Institut Pasteur, Unité de Génétique et Physiologie de l'Audition, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sanda M, Ohara N, Kamata A, Hara Y, Tamaki H, Sukegawa J, Yanagisawa T, Fukunaga K, Kondo H, Sakagami H. Vezatin, a potential target for ADP-ribosylation factor 6, regulates the dendritic formation of hippocampal neurons. Neurosci Res 2010; 67:126-36. [PMID: 20188128 DOI: 10.1016/j.neures.2010.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 12/16/2022]
Abstract
ADP-ribosylation factor 6 (ARF6) is a small GTPase that regulates neuronal morphogenesis processes such as axonal, dendritic, and spine formation possibly through the actin cytoskeleton and membrane trafficking. In an attempt to define the molecular mechanisms that regulate neuronal morphogenesis by ARF6, we identified vezatin as a novel binding partner of active GTP-bound ARF6 using yeast two-hybrid screening. Vezatin was able to bind specifically to GTP-ARF6 among the ARF family. In the adult mouse brain, vezatin exhibited widespread gene expression with high levels in the hippocampus and medial habenular nucleus. In hippocampal neurons, vezatin was localized at dendrites as well as cell bodies. Knockdown of endogenous vezatin significantly reduced total dendritic length and arborization of cultured hippocampal neurons, while overexpression of vezatin increased dendritic length. Our present study suggests that vezatin may regulate dendritic formation as a downstream effector of ARF6.
Collapse
Affiliation(s)
- Masashi Sanda
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara 228-8555, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
|
12
|
Eckert JJ, Fleming TP. Tight junction biogenesis during early development. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1778:717-28. [PMID: 18339299 DOI: 10.1016/j.bbamem.2007.09.031] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/13/2007] [Accepted: 09/17/2007] [Indexed: 01/12/2023]
Abstract
The tight junction (TJ) is an essential component of the differentiated epithelial cell required for polarised transport and intercellular integrity and signalling. Whilst much can be learnt about how the TJ is constructed and maintained and how it functions using a wide range of cellular systems, the mechanisms of TJ biogenesis within developmental models must be studied to gain insight into this process as an integral part of epithelial differentiation. Here, we review TJ biogenesis in the early mammalian embryo, mainly considering the mouse but also including the human and other species, and, briefly, within the amphibian embryo. We relate TJ biogenesis to inherent mechanisms of cell differentiation and biosynthesis occurring during cleavage of the egg and the formation of the first epithelium. We also evaluate a wide range of exogenous cues, including cell-cell interactions, protein kinase C signalling, gap junctional communication, Na+/K+-ATPase and cellular energy status, that may contribute to TJ biogenesis in the embryo and how these may shape the pattern of early morphogenesis.
Collapse
Affiliation(s)
- Judith J Eckert
- School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton, SO16 7PX, UK
| | | |
Collapse
|