1
|
Aldrich JC, Vanderlinden LA, Jacobsen TL, Wood C, Saba LM, Britt SG. Genome-Wide Association Study and transcriptome analysis reveals a complex gene network that regulates opsin gene expression and cell fate determination in Drosophila R7 photoreceptor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606616. [PMID: 39149333 PMCID: PMC11326169 DOI: 10.1101/2024.08.05.606616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Background An animal's ability to discriminate between differing wavelengths of light (i.e., color vision) is mediated, in part, by a subset of photoreceptor cells that express opsins with distinct absorption spectra. In Drosophila R7 photoreceptors, expression of the rhodopsin molecules, Rh3 or Rh4, is determined by a stochastic process mediated by the transcription factor spineless. The goal of this study was to identify additional factors that regulate R7 cell fate and opsin choice using a Genome Wide Association Study (GWAS) paired with transcriptome analysis via RNA-Seq. Results We examined Rh3 and Rh4 expression in a subset of fully-sequenced inbred strains from the Drosophila Genetic Reference Panel and performed a GWAS to identify 42 naturally-occurring polymorphisms-in proximity to 28 candidate genes-that significantly influence R7 opsin expression. Network analysis revealed multiple potential interactions between the associated candidate genes, spineless and its partners. GWAS candidates were further validated in a secondary RNAi screen which identified 12 lines that significantly reduce the proportion of Rh3 expressing R7 photoreceptors. Finally, using RNA-Seq, we demonstrated that all but four of the GWAS candidates are expressed in the pupal retina at a critical developmental time point and that five are among the 917 differentially expressed genes in sevenless mutants, which lack R7 cells. Conclusions Collectively, these results suggest that the relatively simple, binary cell fate decision underlying R7 opsin expression is modulated by a larger, more complex network of regulatory factors. Of particular interest are a subset of candidate genes with previously characterized neuronal functions including neurogenesis, neurodegeneration, photoreceptor development, axon growth and guidance, synaptogenesis, and synaptic function.
Collapse
Affiliation(s)
- John C. Aldrich
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
- Department of Psychology, University of Texas at Austin, Austin, TX 78712
| | - Lauren A. Vanderlinden
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Thomas L. Jacobsen
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| | - Cheyret Wood
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Steven G. Britt
- Department of Neurology, Department of Ophthalmology, Dell Medical School; University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
2
|
Soukar I, Mitra A, Pile LA. Analysis of the chromatin landscape and RNA polymerase II binding at SIN3-regulated genes. Biol Open 2023; 12:bio060026. [PMID: 37850739 PMCID: PMC10651107 DOI: 10.1242/bio.060026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
The chromatin environment has a significant impact on gene expression. Chromatin structure is highly regulated by histone modifications and RNA polymerase II binding dynamics. The SIN3 histone modifying complex regulates the chromatin environment leading to changes in gene expression. In Drosophila melanogaster, the Sin3A gene is alternatively spliced to produce different protein isoforms, two of which include SIN3 220 and SIN3 187. Both SIN3 isoforms are scaffolding proteins that interact with several other factors to regulate the chromatin landscape. The mechanism through which the SIN3 isoforms regulate chromatin is not well understood. Here, we analyze publicly available data sets to allow us to ask specific questions on how SIN3 isoforms regulate chromatin and gene activity. We determined that genes repressed by the SIN3 isoforms exhibited enrichment in histone H3K4me2, H3K4me3, H3K14ac and H3K27ac near the transcription start site. We observed an increase in the amount of paused RNA polymerase II on the promoter of genes repressed by the isoforms as compared to genes that require SIN3 for maximum activation. Furthermore, we analyzed a subset of genes regulated by SIN3 187 that suggest a mechanism in which SIN3 187 might exhibit hard regulation as well as soft regulation. Data presented here expand our knowledge of how the SIN3 isoforms regulate the chromatin environment and RNA polymerase II binding dynamics.
Collapse
Affiliation(s)
- Imad Soukar
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Anindita Mitra
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Lori A. Pile
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
3
|
Bollepogu Raja KK, Yeung K, Shim YK, Li Y, Chen R, Mardon G. A single cell genomics atlas of the Drosophila larval eye reveals distinct photoreceptor developmental timelines. Nat Commun 2023; 14:7205. [PMID: 37938573 PMCID: PMC10632452 DOI: 10.1038/s41467-023-43037-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023] Open
Abstract
The Drosophila eye is a powerful model system to study the dynamics of cell differentiation, cell state transitions, cell maturation, and pattern formation. However, a high-resolution single cell genomics resource that accurately profiles all major cell types of the larval eye disc and their spatiotemporal relationships is lacking. Here, we report transcriptomic and chromatin accessibility data for all known cell types in the developing eye. Photoreceptors appear as strands of cells that represent their dynamic developmental timelines. As photoreceptor subtypes mature, they appear to assume a common transcriptomic profile that is dominated by genes involved in axon function. We identify cell type maturation genes, enhancers, and potential regulators, as well as genes with distinct R3 or R4 photoreceptor specific expression. Finally, we observe that the chromatin accessibility between cones and photoreceptors is distinct. These single cell genomics atlases will greatly enhance the power of the Drosophila eye as a model system.
Collapse
Affiliation(s)
- Komal Kumar Bollepogu Raja
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yoon-Kyung Shim
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Ramalingam V, Yu X, Slaughter BD, Unruh JR, Brennan KJ, Onyshchenko A, Lange JJ, Natarajan M, Buck M, Zeitlinger J. Lola-I is a promoter pioneer factor that establishes de novo Pol II pausing during development. Nat Commun 2023; 14:5862. [PMID: 37735176 PMCID: PMC10514308 DOI: 10.1038/s41467-023-41408-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/30/2023] [Indexed: 09/23/2023] Open
Abstract
While the accessibility of enhancers is dynamically regulated during development, promoters tend to be constitutively accessible and poised for activation by paused Pol II. By studying Lola-I, a Drosophila zinc finger transcription factor, we show here that the promoter state can also be subject to developmental regulation independently of gene activation. Lola-I is ubiquitously expressed at the end of embryogenesis and causes its target promoters to become accessible and acquire paused Pol II throughout the embryo. This promoter transition is required but not sufficient for tissue-specific target gene activation. Lola-I mediates this function by depleting promoter nucleosomes, similar to the action of pioneer factors at enhancers. These results uncover a level of regulation for promoters that is normally found at enhancers and reveal a mechanism for the de novo establishment of paused Pol II at promoters.
Collapse
Affiliation(s)
- Vivekanandan Ramalingam
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center----, Kansas City, KS, USA
- Department of Genetics, Stanford University, Palo Alto, CA, USA
| | - Xinyang Yu
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
| | | | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | | | - Jeffrey J Lange
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Michael Buck
- Department of Biochemistry, State University of New York at Buffalo, Buffalo, NY, USA
- Department of Biomedical Informatics, Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA.
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center----, Kansas City, KS, USA.
| |
Collapse
|
5
|
Fuhrmann N, Prakash C, Kaiser TS. Polygenic adaptation from standing genetic variation allows rapid ecotype formation. eLife 2023; 12:e82824. [PMID: 36852484 PMCID: PMC9977305 DOI: 10.7554/elife.82824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023] Open
Abstract
Adaptive ecotype formation can be the first step to speciation, but the genetic underpinnings of this process are poorly understood. Marine midges of the genus Clunio (Diptera) have recolonized Northern European shore areas after the last glaciation. In response to local tide conditions they have formed different ecotypes with respect to timing of adult emergence, oviposition behavior and larval habitat. Genomic analysis confirms the recent establishment of these ecotypes, reflected in massive haplotype sharing between ecotypes, irrespective of whether there is ongoing gene flow or geographic isolation. QTL mapping and genome screens reveal patterns of polygenic adaptation from standing genetic variation. Ecotype-associated loci prominently include circadian clock genes, as well as genes affecting sensory perception and nervous system development, hinting to a central role of these processes in ecotype formation. Our data show that adaptive ecotype formation can occur rapidly, with ongoing gene flow and largely based on a re-assortment of existing alleles.
Collapse
Affiliation(s)
- Nico Fuhrmann
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Celine Prakash
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | | |
Collapse
|
6
|
Bordet G, Lodhi N, Guo D, Kossenkov A, Tulin AV. Poly(ADP-ribose) polymerase 1 in genome-wide expression control in Drosophila. Sci Rep 2020; 10:21151. [PMID: 33273587 PMCID: PMC7712786 DOI: 10.1038/s41598-020-78116-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/20/2020] [Indexed: 11/13/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme involved in DNA repair and transcription regulation, among other processes. Malignant transformations, tumor progression, the onset of some neuropathies and other disorders have been linked to misregulation of PARP-1 activity. Despite intensive studies during the last few decades, the role of PARP-1 in transcription regulation is still not well understood. In this study, a transcriptomic analysis in Drosophila melanogaster third instar larvae was carried out. A total of 602 genes were identified, showing large-scale changes in their expression levels in the absence of PARP-1 in vivo. Among these genes, several functional gene groups were present, including transcription factors and cytochrome family members. The transcription levels of genes from the same functional group were affected by the absence of PARP-1 in a similar manner. In the absence of PARP-1, all misregulated genes coding for transcription factors were downregulated, whereas all genes coding for members of the cytochrome P450 family were upregulated. The cytochrome P450 proteins contain heme as a cofactor and are involved in oxidoreduction. Significant changes were also observed in the expression of several mobile elements in the absence of PARP-1, suggesting that PARP-1 may be involved in regulating the expression of mobile elements.
Collapse
Affiliation(s)
- Guillaume Bordet
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA
| | - Niraj Lodhi
- Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Danping Guo
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA
| | | | - Alexei V Tulin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 North Columbia Road, Stop 9061, Grand Forks, ND, 58202, USA.
| |
Collapse
|
7
|
Hung RJ, Hu Y, Kirchner R, Liu Y, Xu C, Comjean A, Tattikota SG, Li F, Song W, Ho Sui S, Perrimon N. A cell atlas of the adult Drosophila midgut. Proc Natl Acad Sci U S A 2020; 117:1514-1523. [PMID: 31915294 PMCID: PMC6983450 DOI: 10.1073/pnas.1916820117] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies of the adult Drosophila midgut have led to many insights in our understanding of cell-type diversity, stem cell regeneration, tissue homeostasis, and cell fate decision. Advances in single-cell RNA sequencing provide opportunities to identify new cell types and molecular features. We used single-cell RNA sequencing to characterize the transcriptome of midgut epithelial cells and identified 22 distinct clusters representing intestinal stem cells, enteroblasts, enteroendocrine cells (EEs), and enterocytes. This unbiased approach recovered most of the known intestinal stem cells/enteroblast and EE markers, highlighting the high quality of the dataset, and led to insights on intestinal stem cell biology, cell type-specific organelle features, the roles of new transcription factors in progenitors and regional variation along the gut, 5 additional EE gut hormones, EE hormonal expression diversity, and paracrine function of EEs. To facilitate mining of this rich dataset, we provide a web-based resource for visualization of gene expression in single cells. Altogether, our study provides a comprehensive resource for addressing functions of genes in the midgut epithelium.
Collapse
Affiliation(s)
- Ruei-Jiun Hung
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
| | - Yanhui Hu
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Rory Kirchner
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Yifang Liu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Chiwei Xu
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Aram Comjean
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Fangge Li
- Drosophila RNAi Screening Center, Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Wei Song
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Shannan Ho Sui
- Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, MA 02115
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115;
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
8
|
Hao X, Wang S, Lu Y, Yu W, Li P, Jiang D, Guo T, Li M, Li J, Xu J, Wu W, Ho MS, Zhang L. Lola regulates Drosophila adult midgut homeostasis via non-canonical hippo signaling. eLife 2020; 9:47542. [PMID: 31934851 PMCID: PMC7299341 DOI: 10.7554/elife.47542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 01/10/2020] [Indexed: 01/12/2023] Open
Abstract
Tissue homeostasis and regeneration in the Drosophila midgut is regulated by a diverse array of signaling pathways including the Hippo pathway. Hippo signaling restricts intestinal stem cell (ISC) proliferation by sequestering the transcription co-factor Yorkie (Yki) in the cytoplasm, a factor required for rapid ISC proliferation under injury-induced regeneration. Nonetheless, the mechanism of Hippo-mediated midgut homeostasis and whether canonical Hippo signaling is involved in ISC basal proliferation are less characterized. Here we identify Lola as a transcription factor acting downstream of Hippo signaling to restrict ISC proliferation in a Yki-independent manner. Not only that Lola interacts with and is stabilized by the Hippo signaling core kinase Warts (Wts), Lola rescues the enhanced ISC proliferation upon Wts depletion via suppressing Dref and SkpA expressions. Our findings reveal that Lola is a non-canonical Hippo signaling component in regulating midgut homeostasis, providing insights on the mechanism of tissue maintenance and intestinal function.
Collapse
Affiliation(s)
- Xue Hao
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shimin Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yi Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wentao Yu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Pengyue Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Dan Jiang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Tong Guo
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Mengjie Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, The Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Jinhui Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jinjin Xu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Wenqing Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Margaret S Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lei Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
9
|
Dinges N, Morin V, Kreim N, Southall TD, Roignant JY. Comprehensive Characterization of the Complex lola Locus Reveals a Novel Role in the Octopaminergic Pathway via Tyramine Beta-Hydroxylase Regulation. Cell Rep 2018; 21:2911-2925. [PMID: 29212035 DOI: 10.1016/j.celrep.2017.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/12/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022] Open
Abstract
Longitudinals lacking (lola) is one of the most complex genes in Drosophila melanogaster, encoding up to 20 protein isoforms that include key transcription factors involved in axonal pathfinding and neural reprogramming. Most previous studies have employed loss-of-function alleles that disrupt lola common exons, making it difficult to delineate isoform-specific functions. To overcome this issue, we have generated isoform-specific mutants for all isoforms using CRISPR/Cas9. This enabled us to study specific isoforms with respect to previously characterized roles for Lola and to demonstrate a specific function for one variant in axon guidance via activation of the microtubule-associated factor Futsch. Importantly, we also reveal a role for a second variant in preventing neurodegeneration via the positive regulation of a key enzyme of the octopaminergic pathway. Thus, our comprehensive study expands the functional repertoire of Lola functions, and it adds insights into the regulatory control of neurotransmitter expression in vivo.
Collapse
Affiliation(s)
- Nadja Dinges
- Laboratory of RNA Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Violeta Morin
- Laboratory of RNA Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Nastasja Kreim
- Bioinformatics Core Facility, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Jean-Yves Roignant
- Laboratory of RNA Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
10
|
Cusumano P, Biscontin A, Sandrelli F, Mazzotta GM, Tregnago C, De Pittà C, Costa R. Modulation of miR-210 alters phasing of circadian locomotor activity and impairs projections of PDF clock neurons in Drosophila melanogaster. PLoS Genet 2018; 14:e1007500. [PMID: 30011269 PMCID: PMC6062148 DOI: 10.1371/journal.pgen.1007500] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 07/26/2018] [Accepted: 06/19/2018] [Indexed: 01/03/2023] Open
Abstract
Single microRNAs are usually associated with hundreds of putative target genes that can influence multiple phenotypic traits in Drosophila, ranging from development to behaviour. We investigated the function of Drosophila miR-210 in circadian behaviour by misexpressing it within circadian clock cells. Manipulation of miR-210 expression levels in the PDF (pigment dispersing factor) positive neurons affected the phase of locomotor activity, under both light-dark conditions and constant darkness. PER cyclical expression was not affected in clock neurons, however, when miR-210 was up-regulated, a dramatic alteration in the morphology of PDF ventral lateral neuron (LNv) arborisations was observed. The effect of miR-210 in shaping neuronal projections was confirmed in vitro, using a Drosophila neuronal cell line. A transcriptomic analysis revealed that miR-210 overexpression affects the expression of several genes belonging to pathways related to circadian processes, neuronal development, GTPases signal transduction and photoreception. Collectively, these data reveal the role of miR-210 in modulating circadian outputs in flies and guiding/remodelling PDF positive LNv arborisations and indicate that miR-210 may have pleiotropic effects on the clock, light perception and neuronal development. In recent years, the role of microRNAs in regulating the endogenous circadian clock and its rhythmic outputs for behaviour/physiology has been recognized. We have observed that depletion or over-expression of miR-210 in Drosophila melanogaster modulates the phase of locomotor activity, without affecting the molecular oscillation of the pacemaker neurons. Moreover, miR-210 over-expression dramatically alters the pattern of projections from the PDF-positive Lateral Neurons (LNvs). Differentially expressed genes detected in miR-210 over-expressing flies implicated circadian processes, neuronal development, and photoreception. Taken together, our findings indicate the involvement of miR-210 in modulating circadian output and remodelling the projections of PDF clock neurons, and suggest that miR-210 may have pleiotropic effects on clock, light perception and neuronal development.
Collapse
Affiliation(s)
- Paola Cusumano
- Department of Biology, University of Padova, Padova, Italy
| | | | | | | | - Claudia Tregnago
- Department of Women and Children’s Health, University of Padova, Padova, Italy
| | - Cristiano De Pittà
- Department of Biology, University of Padova, Padova, Italy
- * E-mail: (CD); (RC)
| | - Rodolfo Costa
- Department of Biology, University of Padova, Padova, Italy
- * E-mail: (CD); (RC)
| |
Collapse
|
11
|
Katanaev VL, Egger-Adam D, Tomlinson A. Antagonistic PCP Signaling Pathways in the developing Drosophila eye. Sci Rep 2018; 8:5741. [PMID: 29636485 PMCID: PMC5893544 DOI: 10.1038/s41598-018-24053-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/26/2018] [Indexed: 01/23/2023] Open
Abstract
In Planar cell polarity (PCP), cells coordinately polarize their cytoskeletons within the plane of the epithelium in which they lie. In most insect epithelia this is indicated by the coordinated projections of the hairs secreted by the ectodermal cells. PCP of this form has been effectively studied in Drosophila, but it has proven difficult to achieve an integrated description of the roles played by the various proteins. In the insect eye, PCP is not evident as the polarization of individual cells, but as the asymmetric arrangements of the cells of the ommatidia. This different form of PCP allows different studies to be performed, and using this system we have detected the action of two antagonistic signaling pathways. Even though antagonistic, the two pathways synergize and cooperate to ensure that the correct arrangement of the cells is achieved. The cooperative use of antagonistic signaling pathways occurs in the polarization of chemotacting cells, and we discuss the possibility that a similar molecular principle may underlie PCP.
Collapse
Affiliation(s)
- Vladimir L Katanaev
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 701 West 168th St #1120, New York, NY, 10032, USA.,Department of Biology, University of Konstanz, Universitätsstrasse, 10, Box M643, 78467, Konstanz, Germany.,Department of Pharmacology and Toxicology, University of Lausanne, Rue du Bugnon 27, CH-1005, Lausanne, Switzerland
| | - Diane Egger-Adam
- Department of Biology, University of Konstanz, Universitätsstrasse, 10, Box M643, 78467, Konstanz, Germany
| | - Andrew Tomlinson
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 701 West 168th St #1120, New York, NY, 10032, USA. .,Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, Jerome L. Greene Science Center, MC9892, Level 9 Room 028, 3227 Broadway, New York, NY, 10027, USA.
| |
Collapse
|
12
|
The silent information regulator 1 (Sirt1) is a positive regulator of the Notch pathway in Drosophila. Biochem J 2016; 473:4129-4143. [DOI: 10.1042/bcj20160563] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/26/2016] [Accepted: 09/12/2016] [Indexed: 02/07/2023]
Abstract
The silent information regulator 1 (Sirt1) has been shown to have negative effects on the Notch pathway in several contexts. We bring evidence that Sirt1 has a positive effect on Notch activation in Drosophila, in the context of sensory organ precursor specification and during wing development. The phenotype of Sirt1 mutant resembles weak Notch loss-of-function phenotypes, and genetic interactions of Sirt1 with the components of the Notch pathway also suggest a positive role for Sirt1 in Notch signalling. Sirt1 is necessary for the efficient activation of enhancer of split [E(spl)] genes by Notch in S2N cells. Additionally, the Notch-dependent response of several E(spl) genes is sensitive to metabolic stress caused by 2-deoxy-d-glucose treatment, in a Sirt1-dependent manner. We found Sirt1 associated with several proteins involved in Notch repression as well as activation, including the cofactor exchange factor Ebi (TBL1), the RLAF/LAF histone chaperone complex and the Tip60 acetylation complex. Moreover, Sirt1 participates in the deacetylation of the CSL transcription factor Suppressor of Hairless. The role of Sirt1 in Notch signalling is, therefore, more complex than previously recognized, and its diverse effects may be explained by a plethora of Sirt1 substrates involved in the regulation of Notch signalling.
Collapse
|
13
|
Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli. Dev Biol 2016; 410:164-177. [PMID: 26769100 DOI: 10.1016/j.ydbio.2015.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 11/21/2022]
Abstract
Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli.
Collapse
|
14
|
Insensible is a novel nuclear inhibitor of Notch activity in Drosophila. PLoS One 2014; 9:e98213. [PMID: 24902027 PMCID: PMC4046977 DOI: 10.1371/journal.pone.0098213] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 04/29/2014] [Indexed: 01/23/2023] Open
Abstract
Notch signalling regulates a wide range of developmental processes. In the Drosophila peripheral nervous system, Notch regulates a series of binary fate decisions that lead to the formation of regularly spaced sensory organs. Each sensory organ is generated by single sensory organ precursor cell (SOP) via a series of asymmetric cell divisions. Starting from a SOP-specific Cis-Regulatory Module (CRM), we identified insensible (insb), a.k.a CG6520, as a SOP/neuron-specific gene encoding a nuclear factor that inhibits Notch signalling activity. First, over-expression of Insb led to the transcriptional repression of a Notch reporter and to phenotypes associated with the inhibition of Notch. Second, while the complete loss of insb activity had no significant phenotype, it enhanced the bristle phenotype associated with reduced levels of Hairless, a nuclear protein acting as a co-repressor for Suppressor of Hairless. In conclusion, our work identified Insb as a novel SOP/neuron-specific nuclear inhibitor of Notch activity in Drosophila.
Collapse
|
15
|
Ferreira T, Ou Y, Li S, Giniger E, van Meyel DJ. Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire. Development 2014; 141:650-60. [PMID: 24449841 DOI: 10.1242/dev.099655] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The architectures of dendritic trees are crucial for the wiring and function of neuronal circuits because they determine coverage of receptive territories, as well as the nature and strength of sensory or synaptic inputs. Here, we describe a cell-intrinsic pathway sculpting dendritic arborization (da) neurons in Drosophila that requires Longitudinals Lacking (Lola), a BTB/POZ transcription factor, and its control of the F-actin cytoskeleton through Spire (Spir), an actin nucleation protein. Loss of Lola from da neurons reduced the overall length of dendritic arbors, increased the expression of Spir, and produced inappropriate F-actin-rich dendrites at positions too near the cell soma. Selective removal of Lola from only class IV da neurons decreased the evasive responses of larvae to nociception. The increased Spir expression contributed to the abnormal F-actin-rich dendrites and the decreased nocifensive responses because both were suppressed by reduced dose of Spir. Thus, an important role of Lola is to limit expression of Spir to appropriate levels within da neurons. We found Spir to be expressed in dendritic arbors and to be important for their development. Removal of Spir from class IV da neurons reduced F-actin levels and total branch number, shifted the position of greatest branch density away from the cell soma, and compromised nocifensive behavior. We conclude that the Lola-Spir pathway is crucial for the spatial arrangement of branches within dendritic trees and for neural circuit function because it provides balanced control of the F-actin cytoskeleton.
Collapse
Affiliation(s)
- Tiago Ferreira
- McGill Centre for Research in Neuroscience, McGill University Health Centre, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada
| | | | | | | | | |
Collapse
|
16
|
Dedifferentiation of neurons precedes tumor formation in Lola mutants. Dev Cell 2014; 28:685-96. [PMID: 24631403 PMCID: PMC3978655 DOI: 10.1016/j.devcel.2014.01.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/15/2014] [Accepted: 01/30/2014] [Indexed: 12/30/2022]
Abstract
The ability to reprogram differentiated cells into a pluripotent state has revealed that the differentiated state is plastic and reversible. It is evident, therefore, that mechanisms must be in place to maintain cells in a differentiated state. Transcription factors that specify neuronal characteristics have been well studied, but less is known about the mechanisms that prevent neurons from dedifferentiating to a multipotent, stem cell-like state. Here, we identify Lola as a transcription factor that is required to maintain neurons in a differentiated state. We show that Lola represses neural stem cell genes and cell-cycle genes in postmitotic neurons. In lola mutants, neurons dedifferentiate, turn on neural stem cell genes, and begin to divide, forming tumors. Thus, neurons rather than stem cells or intermediate progenitors are the tumor-initiating cells in lola mutants.
Collapse
|
17
|
Jusiak B, Karandikar UC, Kwak SJ, Wang F, Wang H, Chen R, Mardon G. Regulation of Drosophila eye development by the transcription factor Sine oculis. PLoS One 2014; 9:e89695. [PMID: 24586968 PMCID: PMC3934907 DOI: 10.1371/journal.pone.0089695] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
Homeodomain transcription factors of the Sine oculis (SIX) family direct multiple regulatory processes throughout the metazoans. Sine oculis (So) was first characterized in the fruit fly Drosophila melanogaster, where it is both necessary and sufficient for eye development, regulating cell survival, proliferation, and differentiation. Despite its key role in development, only a few direct targets of So have been described previously. In the current study, we aim to expand our knowledge of So-mediated transcriptional regulation in the developing Drosophila eye using ChIP-seq to map So binding regions throughout the genome. We find 7,566 So enriched regions (peaks), estimated to map to 5,952 genes. Using overlap between the So ChIP-seq peak set and genes that are differentially regulated in response to loss or gain of so, we identify putative direct targets of So. We find So binding enrichment in genes not previously known to be regulated by So, including genes that encode cell junction proteins and signaling pathway components. In addition, we analyze a subset of So-bound novel genes in the eye, and find eight genes that have previously uncharacterized eye phenotypes and may be novel direct targets of So. Our study presents a greatly expanded list of candidate So targets and serves as basis for future studies of So-mediated gene regulation in the eye.
Collapse
Affiliation(s)
- Barbara Jusiak
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Umesh C. Karandikar
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Su-Jin Kwak
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Feng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Hui Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Rui Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Graeme Mardon
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Gates MA, Kannan R, Giniger E. A genome-wide analysis reveals that the Drosophila transcription factor Lola promotes axon growth in part by suppressing expression of the actin nucleation factor Spire. Neural Dev 2011; 6:37. [PMID: 22129300 PMCID: PMC3262752 DOI: 10.1186/1749-8104-6-37] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/30/2011] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The phylogenetically conserved transcription factor Lola is essential for many aspects of axon growth and guidance, synapse formation and neural circuit development in Drosophila. To date it has been difficult, however, to obtain an overall view of Lola functions and mechanisms. RESULTS We use expression microarrays to identify the lola-dependent transcriptome in the Drosophila embryo. We find that lola regulates the expression of a large selection of genes that are known to affect each of several lola-dependent developmental processes. Among other loci, we find lola to be a negative regulator of spire, an actin nucleation factor that has been studied for its essential role in oogenesis. We show that spire is expressed in the nervous system and is required for a known lola-dependent axon guidance decision, growth of ISNb motor axons. We further show that reducing spire gene dosage suppresses this aspect of the lola phenotype, verifying that derepression of spire is an important contributor to the axon stalling phenotype of embryonic motor axons in lola mutants. CONCLUSIONS These data shed new light on the molecular mechanisms of many lola-dependent processes, and also identify several developmental processes not previously linked to lola that are apt to be regulated by this transcription factor. These data further demonstrate that excessive expression of the actin nucleation factor Spire is as deleterious for axon growth in vivo as is the loss of Spire, thus highlighting the need for a balance in the elementary steps of actin dynamics to achieve effective neuronal morphogenesis.
Collapse
Affiliation(s)
- Michael A Gates
- Basic Neuroscience Program, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892 USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 USA
| | - Ramakrishnan Kannan
- Basic Neuroscience Program, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Edward Giniger
- Basic Neuroscience Program, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892 USA
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 USA
- Graduate Program in Molecular and Cellular Biology, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, 98109 USA
| |
Collapse
|
19
|
Neumüller RA, Richter C, Fischer A, Novatchkova M, Neumüller KG, Knoblich JA. Genome-wide analysis of self-renewal in Drosophila neural stem cells by transgenic RNAi. Cell Stem Cell 2011; 8:580-93. [PMID: 21549331 PMCID: PMC3093620 DOI: 10.1016/j.stem.2011.02.022] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 11/01/2010] [Accepted: 02/16/2011] [Indexed: 01/14/2023]
Abstract
The balance between stem cell self-renewal and differentiation is precisely controlled to ensure tissue homeostasis and prevent tumorigenesis. Here we use genome-wide transgenic RNAi to identify 620 genes potentially involved in controlling this balance in Drosophila neuroblasts. We quantify all phenotypes and derive measurements for proliferation, lineage, cell size, and cell shape. We identify a set of transcriptional regulators essential for self-renewal and use hierarchical clustering and integration with interaction data to create functional networks for the control of neuroblast self-renewal and differentiation. Our data identify key roles for the chromatin remodeling Brm complex, the spliceosome, and the TRiC/CCT-complex and show that the alternatively spliced transcription factor Lola and the transcriptional elongation factors Ssrp and Barc control self-renewal in neuroblast lineages. As our data are strongly enriched for genes highly expressed in murine neural stem cells, they are likely to provide valuable insights into mammalian stem cell biology as well.
Collapse
Affiliation(s)
- Ralph A Neumüller
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
20
|
Charlton-Perkins M, Whitaker SL, Fei Y, Xie B, Li-Kroeger D, Gebelein B, Cook T. Prospero and Pax2 combinatorially control neural cell fate decisions by modulating Ras- and Notch-dependent signaling. Neural Dev 2011; 6:20. [PMID: 21539742 PMCID: PMC3123624 DOI: 10.1186/1749-8104-6-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 05/03/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The concept of an equivalence group, a cluster of cells with equal potential to adopt the same specific fate, has served as a useful paradigm to understand neural cell type specification. In the Drosophila eye, a set of five cells, called the 'R7 equivalence group', generates a single photoreceptor neuron and four lens-secreting epithelial cells. This choice between neuronal versus non-neuronal cell fates rests on differential requirements for, and cross-talk between, Notch/Delta- and Ras/mitogen-activated protein kinase (MAPK)-dependent signaling pathways. However, many questions remain unanswered related to how downstream events of these two signaling pathways mediate distinct cell fate decisions. RESULTS Here, we demonstrate that two direct downstream targets of Ras and Notch signaling, the transcription factors Prospero and dPax2, are essential regulators of neuronal versus non-neuronal cell fate decisions in the R7 equivalence group. Prospero controls high activated MAPK levels required for neuronal fate, whereas dPax2 represses Delta expression to prevent neuronal fate. Importantly, activity from both factors is required for proper cell fate decisions to occur. CONCLUSIONS These data demonstrate that Ras and Notch signaling are integrated during cell fate decisions within the R7 equivalence group through the combinatorial and opposing activities of Pros and dPax2. Our study provides one of the first examples of how the differential expression and synergistic roles of two independent transcription factors determine cell fate within an equivalence group. Since the integration of Ras and Notch signaling is associated with many developmental and cancer models, these findings should provide new insights into how cell specificity is achieved by ubiquitously used signaling pathways in diverse biological contexts.
Collapse
Affiliation(s)
- Mark Charlton-Perkins
- Department of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Genome-wide identification of cis-regulatory motifs and modules underlying gene coregulation using statistics and phylogeny. Proc Natl Acad Sci U S A 2010; 107:14615-20. [PMID: 20671200 DOI: 10.1073/pnas.1002876107] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cell fate determination depends in part on the establishment of specific transcriptional programs of gene expression. These programs result from the interpretation of the genomic cis-regulatory information by sequence-specific factors. Decoding this information in sequenced genomes is an important issue. Here, we developed statistical analysis tools to computationally identify the cis-regulatory elements that control gene expression in a set of coregulated genes. Starting with a small number of validated and/or predicted cis-regulatory modules (CRMs) in a reference species as a training set, but with no a priori knowledge of the factors acting in trans, we computationally predicted transcription factor binding sites (TFBSs) and genomic CRMs underlying coregulation. This method was applied to the gene expression program active in Drosophila melanogaster sensory organ precursor cells (SOPs), a specific type of neural progenitor cells. Mutational analysis showed that four, including one newly characterized, out of the five top-ranked families of predicted TFBSs were required for SOP-specific gene expression. Additionaly, 19 out of the 29 top-ranked predicted CRMs directed gene expression in neural progenitor cells, i.e., SOPs or larval brain neuroblasts, with a notable fraction active in SOPs (11/29). We further identified the lola gene as the target of two SOP-specific CRMs and found that the lola gene contributed to SOP specification. The statistics and phylogeny-based tools described here can be more generally applied to identify the cis-regulatory elements of specific gene regulatory networks in any family of related species with sequenced genomes.
Collapse
|
22
|
Pickup AT, Ming L, Lipshitz HD. Hindsight modulates Delta expression during Drosophila cone cell induction. Development 2009; 136:975-82. [PMID: 19234063 DOI: 10.1242/dev.027318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The induction of cone cells in the Drosophila larval eye disc by the determined R1/R6 photoreceptor precursor cells requires integration of the Delta-Notch and EGF receptor signaling pathways with the activity of the Lozenge transcription factor. Here, we demonstrate that the zinc-finger transcription factor Hindsight (HNT) is required for normal cone-cell induction. R-cells in which hindsight levels are knocked down using RNAi show normal subtype specification, but these cells have lower levels of the Notch ligand Delta. We show that HNT functions in the determined R1/R6 precursor cells to allow Delta transcription to reach high enough levels at the right time to induce the cone-cell determinants Prospero and D-Pax2 in neighboring cells. The Delta signal emanating from the R1/R6 precursor cells is also required to specify the R7 precursor cell by repressing seven-up. As hindsight mutants have normal R7 cell-fate determination, we infer that there is a lower threshold of Delta required for R7 specification than for cone-cell induction.
Collapse
Affiliation(s)
- Amanda T Pickup
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Department of Molecular Genetics, University of Toronto, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | | | | |
Collapse
|