1
|
Rotelli MD, Policastro RA, Bolling AM, Killion AW, Weinberg AJ, Dixon MJ, Zentner GE, Walczak CE, Lilly MA, Calvi BR. A Cyclin A-Myb-MuvB-Aurora B network regulates the choice between mitotic cycles and polyploid endoreplication cycles. PLoS Genet 2019; 15:e1008253. [PMID: 31291240 PMCID: PMC6645565 DOI: 10.1371/journal.pgen.1008253] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/22/2019] [Accepted: 06/18/2019] [Indexed: 12/30/2022] Open
Abstract
Endoreplication is a cell cycle variant that entails cell growth and periodic genome duplication without cell division, and results in large, polyploid cells. Cells switch from mitotic cycles to endoreplication cycles during development, and also in response to conditional stimuli during wound healing, regeneration, aging, and cancer. In this study, we use integrated approaches in Drosophila to determine how mitotic cycles are remodeled into endoreplication cycles, and how similar this remodeling is between induced and developmental endoreplicating cells (iECs and devECs). Our evidence suggests that Cyclin A / CDK directly activates the Myb-MuvB (MMB) complex to induce transcription of a battery of genes required for mitosis, and that repression of CDK activity dampens this MMB mitotic transcriptome to promote endoreplication in both iECs and devECs. iECs and devECs differed, however, in that devECs had reduced expression of E2F1-dependent genes that function in S phase, whereas repression of the MMB transcriptome in iECs was sufficient to induce endoreplication without a reduction in S phase gene expression. Among the MMB regulated genes, knockdown of AurB protein and other subunits of the chromosomal passenger complex (CPC) induced endoreplication, as did knockdown of CPC-regulated cytokinetic, but not kinetochore, proteins. Together, our results indicate that the status of a CycA-Myb-MuvB-AurB network determines the decision to commit to mitosis or switch to endoreplication in both iECs and devECs, and suggest that regulation of different steps of this network may explain the known diversity of polyploid cycle types in development and disease.
Collapse
Affiliation(s)
- Michael D. Rotelli
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Robert A. Policastro
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Anna M. Bolling
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Andrew W. Killion
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Abraham J. Weinberg
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Michael J. Dixon
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Gabriel E. Zentner
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
| | - Claire E. Walczak
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
- Indiana University School of Medicine, Bloomington, Indiana, United States of America
| | - Mary A. Lilly
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Brian R. Calvi
- Department of Biology. Indiana University, Bloomington, Indiana, United States of America
- Melvin and Bren Simon Cancer Center, Indianapolis, Indiana, United States of America
- Indiana University School of Medicine, Bloomington, Indiana, United States of America
| |
Collapse
|
2
|
Rovani MK, Brachmann CB, Ramsay G, Katzen AL. The dREAM/Myb-MuvB complex and Grim are key regulators of the programmed death of neural precursor cells at the Drosophila posterior wing margin. Dev Biol 2012; 372:88-102. [PMID: 22960039 DOI: 10.1016/j.ydbio.2012.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 07/23/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
Successful development of a multicellular organism depends on the finely tuned orchestration of cell proliferation, differentiation and apoptosis from embryogenesis through adulthood. The MYB-gene family encodes sequence-specific DNA-binding transcription factors that have been implicated in the regulation of both normal and neoplastic growth. The Drosophila Myb protein, DMyb (and vertebrate B-Myb protein), has been shown to be part of the dREAM/MMB complex, a large multi-subunit complex, which in addition to four Myb-interacting proteins including Mip130, contains repressive E2F and pRB proteins. This complex has been implicated in the regulation of DNA replication within the context of chorion gene amplification and transcriptional regulation of a wide array of genes. Detailed phenotypic analysis of mutations in the Drosophila myb gene, Dm myb, has revealed a previously undiscovered function for the dREAM/MMB complex in regulating programmed cell death (PCD). In cooperation with the pro-apoptotic protein Grim and dREAM/MMB, DMyb promotes the PCD of specified sensory organ precursor daughter cells in at least two different settings in the peripheral nervous system: the pIIIb precursor of the neuron and sheath cells in the posterior wing margin and the glial cell in the thoracic microchaete lineage. Unlike previously analyzed settings, in which the main role of DMyb has been to antagonize the activities of other dREAM/MMB complex members, it appears to be the critical effector in promoting PCD. The finding that Dm myb and grim are both involved in regulating PCD in two distinct settings suggests that these two genes may often work together to mediate PCD.
Collapse
Affiliation(s)
- Margritte K Rovani
- Department of Biochemistry and Molecular Genetics University of Illinois at Chicago, 900 South Ashland Avenue, Chicago, IL 60607-7170, USA
| | | | | | | |
Collapse
|
3
|
Meyer HJ, Rape M. Processive ubiquitin chain formation by the anaphase-promoting complex. Semin Cell Dev Biol 2011; 22:544-50. [PMID: 21477659 DOI: 10.1016/j.semcdb.2011.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 03/16/2011] [Indexed: 12/11/2022]
Abstract
Progression through mitosis requires the sequential ubiquitination of cell cycle regulators by the anaphase-promoting complex, resulting in their proteasomal degradation. Although several mechanisms contribute to APC/C regulation during mitosis, the APC/C is able to discriminate between its many substrates by exploiting differences in the processivity of ubiquitin chain assembly. Here, we discuss how the APC/C achieves processive ubiquitin chain formation to trigger the sequential degradation of cell cycle regulators during mitosis.
Collapse
Affiliation(s)
- Hermann-Josef Meyer
- University of California at Berkeley, Department of Molecular and Cell Biology, Berkeley, CA 94720-3202, United States
| | | |
Collapse
|