1
|
Smith FW, Game M, Mapalo MA, Chavarria RA, Harrison TR, Janssen R. Developmental and genomic insight into the origin of the tardigrade body plan. Evol Dev 2024; 26:e12457. [PMID: 37721221 DOI: 10.1111/ede.12457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/19/2023]
Abstract
Tardigrada is an ancient lineage of miniaturized animals. As an outgroup of the well-studied Arthropoda and Onychophora, studies of tardigrades hold the potential to reveal important insights into body plan evolution in Panarthropoda. Previous studies have revealed interesting facets of tardigrade development and genomics that suggest that a highly compact body plan is a derived condition of this lineage, rather than it representing an ancestral state of Panarthropoda. This conclusion was based on studies of several species from Eutardigrada. We review these studies and expand on them by analyzing the publicly available genome and transcriptome assemblies of Echiniscus testudo, a representative of Heterotardigrada. These new analyses allow us to phylogenetically reconstruct important features of genome evolution in Tardigrada. We use available data from tardigrades to interrogate several recent models of body plan evolution in Panarthropoda. Although anterior segments of panarthropods are highly diverse in terms of anatomy and development, both within individuals and between species, we conclude that a simple one-to-one alignment of anterior segments across Panarthropoda is the best available model of segmental homology. In addition to providing important insight into body plan diversification within Panarthropoda, we speculate that studies of tardigrades may reveal generalizable pathways to miniaturization.
Collapse
Affiliation(s)
- Frank W Smith
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Mandy Game
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Marc A Mapalo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Raul A Chavarria
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Taylor R Harrison
- Biology Department, University of North Florida, Jacksonville, Florida, USA
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Li Z, Zhang J, Yin S, Xi G. Toxicity effect of the edible pigment carmoisine on Polyrhachis vicina Roger (Hymenoptera: Formicidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1009-1022. [PMID: 35792963 DOI: 10.1007/s10646-022-02563-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Carmoisine belongs to a water-soluble synthetic dye and is often used as a food additive. Previous research has shown that carmoisine is toxic to rats and zebrafish, but there have been few reports on the effect of carmoisine on soil-dwelling social insects. The present study evaluated carmoisine toxicity in Polyrhachis vicina Roger. We found that the effects of different concentrations of carmoisine on the mortality of workers were dose-dependent. The 10% lethal dose (LD10), 50% lethal dose (LD50) and 90% lethal dose (LD90) of carmoisine to workers at 96 h was calculated to be 0.504, 5.491 and 10.478 g/L, respectivily. LD10 of workers were selected to treat the fourth instar larvae, pupae and adults for 10 days. The results showed that the survival rate of all ants, except for females, was significantly reduced, especially larvae and workers. The body weight of larvae, pupae and males decreased significantly, while weight gain was observed in the females and workers. The appearance of larvae, pupae and workers changed after carmoisine treatment, such as body darkening and epidermis shrinking of larvae and pupae, as well as body segment expansion of workers. Furthermore, carmoisine altered the expression of the estrogen-related receptor, tailless and homothorax of P. vicina (Pv-ERR, Pv-tll and Pv-hth) to varying degrees in larvae and adults. We believe that variations in body weight can lead to a decrease in survival rate and appearance changes in the ants, which may be related to abnormal gene expressions caused by carmoisine treatment. Therefore, we confirm that carmoisine has negative effects on the growth and development of P. vicina.
Collapse
Affiliation(s)
- Ziyu Li
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China
| | - Jing Zhang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China
| | - Shaoting Yin
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China
| | - Gengsi Xi
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, Shaanxi Province, China.
| |
Collapse
|
3
|
Trebels B, Dippel S, Goetz B, Graebner M, Hofmann C, Hofmann F, Schmid FR, Uhl M, Vuong MP, Weber V, Schachtner J. Metamorphic development of the olfactory system in the red flour beetle (Tribolium castaneum, HERBST). BMC Biol 2021; 19:155. [PMID: 34330268 PMCID: PMC8323255 DOI: 10.1186/s12915-021-01055-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Insects depend on their olfactory sense as a vital system. Olfactory cues are processed by a rather complex system and translated into various types of behavior. In holometabolous insects like the red flour beetle Tribolium castaneum, the nervous system typically undergoes considerable remodeling during metamorphosis. This process includes the integration of new neurons, as well as remodeling and elimination of larval neurons. RESULTS We find that the sensory neurons of the larval antennae are reused in the adult antennae. Further, the larval antennal lobe gets transformed into its adult version. The beetle's larval antennal lobe is already glomerularly structured, but its glomeruli dissolve in the last larval stage. However, the axons of the olfactory sensory neurons remain within the antennal lobe volume. The glomeruli of the adult antennal lobe then form from mid-metamorphosis independently of the presence of a functional OR/Orco complex but mature dependent on the latter during a postmetamorphic phase. CONCLUSIONS We provide insights into the metamorphic development of the red flour beetle's olfactory system and compared it to data on Drosophila melanogaster, Manduca sexta, and Apis mellifera. The comparison revealed that some aspects, such as the formation of the antennal lobe's adult glomeruli at mid-metamorphosis, are common, while others like the development of sensory appendages or the role of Orco seemingly differ.
Collapse
Affiliation(s)
- Björn Trebels
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Stefan Dippel
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Brigitte Goetz
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Maria Graebner
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Carolin Hofmann
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Florian Hofmann
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Freya-Rebecca Schmid
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Mara Uhl
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Minh-Phung Vuong
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Vanessa Weber
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Joachim Schachtner
- Department of Biology, Animal Physiology, Philipps-University Marburg, Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
- Clausthal University of Technology, Adolph-Roemer-Str. 2a, 38678 Clausthal-Zellerfeld, Germany
| |
Collapse
|
4
|
Game M, Smith FW. Loss of intermediate regions of perpendicular body axes contributed to miniaturization of tardigrades. Proc Biol Sci 2020; 287:20201135. [PMID: 33043863 DOI: 10.1098/rspb.2020.1135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tardigrades have a miniaturized body plan. Miniaturization in tardigrades is associated with the loss of several organ systems and an intermediate region of their anteroposterior (AP) axis. However, how miniaturization has affected tardigrade legs is unclear. In arthropods and in onychophorans, the leg gap genes are expressed in regionalized proximodistal (PD) patterns in the legs. Functional studies indicate that these genes regulate growth in their respective expression domains and establish PD identities, partly through mutually antagonistic regulatory interactions. Here, we investigated the expression patterns of tardigrade orthologs of the leg gap genes. Rather than being restricted to a proximal leg region, as in arthropods and onychophorans, we detected coexpression of orthologues of homothorax and extradenticle broadly across the legs of the first three trunk segments in the tardigrade Hypsibius exemplaris. We could not identify a dachshund orthologue in tardigrade genomes, a gene that is expressed in an intermediate region of developing legs in arthropods and onychophorans, suggesting that this gene was lost in the tardigrade lineage. We detected Distal-less expression broadly across all developing leg buds in H. exemplaris embryos, unlike in arthropods and onychophorans, in which it exhibits a distally restricted expression domain. The broad expression patterns of the remaining leg gap genes in H. exemplaris legs may reflect the loss of dachshund and the accompanying loss of an intermediate region of the legs in the tardigrade lineage. We propose that the loss of intermediate regions of both the AP and PD body axes contributed to miniaturization of Tardigrada.
Collapse
Affiliation(s)
- Mandy Game
- Biology Department, University of North Florida, USA
| | - Frank W Smith
- Biology Department, University of North Florida, USA
| |
Collapse
|
5
|
Tungjitwitayakul J, Yasanga T, Tatun N. Impact of UV-C radiation on morphology of the antenna and antennal sensilla in Tribolium castaneum (Coleoptera: Tenebrionidae). JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1812797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Li X, Liu FZ, Cai WL, Zhao J, Hua HX, Zou YL. The function of spineless in antenna and wing development of the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2019; 28:196-207. [PMID: 30230080 DOI: 10.1111/imb.12538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A wide array of sensilla are distributed on insect antennae, and they play a variety of important roles. Rice planthoppers, destructive pests on rice, have a unique antenna sensilla structure called the 'sensory plaque organ'. The spineless (ss) gene encodes a bHLH-PAS transcription factor and plays a key role in antenna development. In the current study, a 3029 bp full-length cDNA of the Nilaparvata lugens ss gene (Nlss) was cloned, and it encodes 654 amino acid residues. The highest level of Nlss expression was detected in the thorax of fourth-instar nymphs. Knockdown of Nlss in nymphs led to a decrease in the number and size of plaque organs. Moreover, the flagella of the treated insects were poorly developed, wilted, and even dropped off from the pedicel. Nlss-knockdown also resulted in twisted wings in both long-winged and short-winged brown planthoppers. Y-type olfactometer analyses indicated that antenna defects originating from Nlss depletion resulted in less sensitivity to host volatiles. This study represents the first report of the characteristics and functions of Nlss in N. lugens antenna and wing development and illuminates the function of the plaque organ of N. lugens in host volatile perception.
Collapse
Affiliation(s)
- X Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - F-Z Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - W-L Cai
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - J Zhao
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - H-X Hua
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Y-L Zou
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Thümecke S, Schröder R. UTR-specific knockdown of Distal-less and Sp8 leads to new phenotypic variants in the flour beetle Tribolium. Dev Genes Evol 2018; 228:163-170. [PMID: 29855703 DOI: 10.1007/s00427-018-0614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/08/2018] [Indexed: 10/14/2022]
Abstract
RNA interference (RNAi)-mediated knockdown serves as an effective technique for the functional analysis of developmental genes that is well established in many organisms. In the beetle Tribolium castaneum, double-stranded RNA is applied by simple injection and distributes systemically within the tissue. Thus, systematic testing for RNAi specificity and efficiency is easily possible in this organism. Generally, the use of non-overlapping dsRNA fragments yielding qualitatively identical phenotypes is the method of choice to verify target-specific knockdown effects. Here, we show that UTR-specific RNAi results in different effects regarding quality, severity and penetrance when compared to RNAi fragments directed at the coding region. Furthermore, when using 3'UTR-specific dsRNA, we first describe the Distal-lessRNAi antenna-to-leg transformation phenotype in the Tribolium larva, which has only been observed in the adult beetle and Drosophila so far. In addition, we unexpectedly observed sterility effects caused by 3'UTR-specific knockdown of the Tribolium-Sp8 orthologue that is not seen when dsRNA targeted a sequence within the coding-region or the 5'UTR that itself led to early embryonic lethality. We conclude that targeting UTR sequences by region-specific RNAi can reveal unexpected new aspects of gene function applicable in basic research and crop protection.
Collapse
Affiliation(s)
- Susanne Thümecke
- Institut für Biowissenschaften, Universität Rostock, Albert-Einsteinstr. 3, 18059, Rostock, Germany
| | - Reinhard Schröder
- Institut für Biowissenschaften, Universität Rostock, Albert-Einsteinstr. 3, 18059, Rostock, Germany.
| |
Collapse
|
8
|
Setton EVW, March LE, Nolan ED, Jones TE, Cho H, Wheeler WC, Extavour CG, Sharma PP. Expression and function of spineless orthologs correlate with distal deutocerebral appendage morphology across Arthropoda. Dev Biol 2017; 430:224-236. [PMID: 28764892 DOI: 10.1016/j.ydbio.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 07/03/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
The deutocerebral (second) head segment is putatively homologous across Arthropoda, in spite of remarkable disparity of form and function of deutocerebral appendages. In Mandibulata this segment bears a pair of sensory antennae, whereas in Chelicerata the same segment bears a pair of feeding appendages called chelicerae. Part of the evidence for the homology of deutocerebral appendages is the conserved function of homothorax (hth), which has been shown to specify antennal or cheliceral fate in the absence of Hox signaling, in both mandibulate and chelicerate exemplars. However, the genetic basis for the morphological disparity of antenna and chelicera is not understood. To test whether downstream targets of hth have diverged in a lineage-specific manner, we examined the evolution of the function and expression of spineless (ss), which in two holometabolous insects is known to act as a hth target and distal antennal determinant. Toward expanding phylogenetic representation of gene expression data, here we show that strong expression of ss is observed in developing antennae of a hemimetabolous insect, a centipede, and an amphipod crustacean. By contrast, ss orthologs are not expressed throughout the cheliceral limb buds of spiders or harvestmen during developmental stages when appendage fate is specified. RNA interference-mediated knockdown of ss in Oncopeltus fasciatus, which bears a simple plesiomorphic antenna, resulted in homeotic distal antenna-to-leg transformation, comparable to data from holometabolous insect counterparts. Knockdown of hth in Oncopeltus fasciatus abrogated ss expression, suggesting conservation of upstream regulation. These data suggest that ss may be a flagellar (distal antennal) determinant more broadly, and that this function was acquired at the base of Mandibulata.
Collapse
Affiliation(s)
- Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Logan E March
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Erik D Nolan
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Holly Cho
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Schmidt-Ott U, Lynch JA. Emerging developmental genetic model systems in holometabolous insects. Curr Opin Genet Dev 2016; 39:116-128. [PMID: 27399647 DOI: 10.1016/j.gde.2016.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/25/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023]
Abstract
The number of insect species that are amenable to functional genetic studies is growing rapidly and provides many new research opportunities in developmental and evolutionary biology. The holometabolous insects represent a disproportionate percentage of animal diversity and are thus well positioned to provide model species for a wide variety of developmental processes. Here we discuss emerging holometabolous models, and review some recent breakthroughs. For example, flies and midges were found to use structurally unrelated long-range pattern organizers, butterflies and moths revealed extensive pattern formation during oogenesis, new imaging possibilities in the flour beetle Tribolium castaneum showed how embryos break free of their extraembryonic membranes, and the complex genetics governing interspecies difference in head shape were revealed in Nasonia wasps.
Collapse
Affiliation(s)
- Urs Schmidt-Ott
- Department of Organismal Biology and Anatomy, University of Chicago, United States.
| | - Jeremy A Lynch
- Department of Biological Sciences, University of Illinois at Chicago, United States.
| |
Collapse
|
10
|
Sharma PP, Tarazona OA, Lopez DH, Schwager EE, Cohn MJ, Wheeler WC, Extavour CG. A conserved genetic mechanism specifies deutocerebral appendage identity in insects and arachnids. Proc Biol Sci 2016; 282:20150698. [PMID: 25948691 DOI: 10.1098/rspb.2015.0698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The segmental architecture of the arthropod head is one of the most controversial topics in the evolutionary developmental biology of arthropods. The deutocerebral (second) segment of the head is putatively homologous across Arthropoda, as inferred from the segmental distribution of the tripartite brain and the absence of Hox gene expression of this anterior-most, appendage-bearing segment. While this homology statement implies a putative common mechanism for differentiation of deutocerebral appendages across arthropods, experimental data for deutocerebral appendage fate specification are limited to winged insects. Mandibulates (hexapods, crustaceans and myriapods) bear a characteristic pair of antennae on the deutocerebral segment, whereas chelicerates (e.g. spiders, scorpions, harvestmen) bear the eponymous chelicerae. In such hexapods as the fruit fly, Drosophila melanogaster, and the cricket, Gryllus bimaculatus, cephalic appendages are differentiated from the thoracic appendages (legs) by the activity of the appendage patterning gene homothorax (hth). Here we show that embryonic RNA interference against hth in the harvestman Phalangium opilio results in homeonotic chelicera-to-leg transformations, and also in some cases pedipalp-to-leg transformations. In more strongly affected embryos, adjacent appendages undergo fusion and/or truncation, and legs display proximal defects, suggesting conservation of additional functions of hth in patterning the antero-posterior and proximo-distal appendage axes. Expression signal of anterior Hox genes labial, proboscipedia and Deformed is diminished, but not absent, in hth RNAi embryos, consistent with results previously obtained with the insect G. bimaculatus. Our results substantiate a deep homology across arthropods of the mechanism whereby cephalic appendages are differentiated from locomotory appendages.
Collapse
Affiliation(s)
- Prashant P Sharma
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Oscar A Tarazona
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Davys H Lopez
- Department of Biology, University of Florida, Gainesville, FL 32611, USA Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Evelyn E Schwager
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Martin J Cohn
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
11
|
Smith FW, Angelini DR, Gaudio MS, Jockusch EL. Metamorphic labral axis patterning in the beetle Tribolium castaneum requires multiple upstream, but few downstream, genes in the appendage patterning network. Evol Dev 2014; 16:78-91. [PMID: 24617987 DOI: 10.1111/ede.12066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The arthropod labrum is an anterior appendage-like structure that forms the dorsal side of the preoral cavity. Conflicting interpretations of fossil, nervous system, and developmental data have led to a proliferation of scenarios for labral evolution. The best supported hypothesis is that the labrum is a novel structure that shares development with appendages as a result of co-option. Here, we use RNA interference in the red flour beetle Tribolium castaneum to compare metamorphic patterning of the labrum to previously published data on ventral appendage patterning. As expected under the co-option hypothesis, depletion of several genes resulted in similar defects in the labrum and ventral appendages. These include proximal deletions and proximal-to-distal transformations resulting from depletion of the leg gap genes homothorax and extradenticle, large-scale deletions resulting from depletion of the leg gap gene Distal-less, and smaller distal deletions resulting from knockdown of the EGF ligand Keren. However, depletion of dachshund and many of the genes that function downstream of the leg gap genes in the ventral appendages had either subtle or no effects on labral axis patterning. This pattern of partial similarity suggests that upstream genes act through different downstream targets in the labrum. We also discovered that many appendage axis patterning genes have roles in patterning the epipharyngeal sensillum array, suggesting that they have become integrated into a novel regulatory network. These genes include Notch, Delta, and decapentaplegic, and the transcription factors abrupt, bric à brac, homothorax, extradenticle and the paralogs apterous a and apterous b.
Collapse
Affiliation(s)
- Frank W Smith
- Department of Ecology & Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT, 06269-3043, USA
| | | | | | | |
Collapse
|
12
|
Smith FW, Jockusch EL. Hox genes require homothorax and extradenticle for body wall identity specification but not for appendage identity specification during metamorphosis of Tribolium castaneum. Dev Biol 2014; 395:182-97. [DOI: 10.1016/j.ydbio.2014.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 11/29/2022]
|